КРАТКАЯ ФИЗИКО‑ГЕОГРАФИЧЕСКАЯ ХАРАКТЕРИСТИКА МИРОВОГО ОКЕАНА
Если взглянуть на нашу планету из Космоса, она кажется голубой. И не удивительно. Ведь 70,8% ее поверхности покрыто водой – Мировым океаном.
Четыре океана составляют его: Тихий, Атлантический, Индийский и Северный Ледовитый. Географы разделили Мировой океан на несколько зон в зависимости от их физико‑географических особенностей.
Между 60° и 40° с.ш. расположена умеренная зона – зона прохладных вод и активной циклонической деятельности. В летнее время температура воздуха здесь поднимается до 22° – почти совпадая с температурой воды. Слабые западные и юго‑западные ветры едва шевелят водную гладь. Для этой зоны обычна пасмурная погода с моросящим дождем и густыми туманами. В зимние месяцы температура воздуха опускается ниже нулевой отметки, а на севере Тихого океана воздух охлаждается до минус 13°.
Зима – разгар циклонической деятельности, и штормы – частые гости этих краев.
Субтропическая зона простирается примерно между 40‑50° и 30‑40° с. ш. Влажный тропический воздух прогревается летом до 24‑28°. Однако поверхностные воды остаются относительно холодными. Хотя эта зона бедна осадками, мгла и туманы здесь не редкость. В зимний период года, когда разница температур между водой и воздухом вызывает усиление конвекционных процессов, обычны дни с дождями и снегопадами. Погода крайне неустойчива, и спокойные солнечные дни то и дело сменяются сильными штормами.
Для тропической зоны, лежащей между 25‑30° и 8° с.ш., характерны высокие летние температуры воды и воздуха (25‑27°). Осадков выпадает немного, и устойчивые восточные пассаты дуют не переставая круглый год. Зимой температура воздуха уменьшается до 10‑15°. Вероятность дождей возрастает до 15‑20%. А порой на океан обрушиваются грозные ураганы и тайфуны, и тогда пенистые гребни огромных волн скрываются в густых тучах, опустившихся к самой воде.
Экваториальная зона. О вступлении в ее пределы можно узнать по резкому ослаблению ветра, возросшей облачности, участившимся дождям. Экваториальная зона – самая жаркая в океане. Здесь в течение всех 12 месяцев ртутный столбик термометра не спускается ниже 24°, а иногда подолгу держится у отметки 30°. Годовые колебания температуры весьма незначительны – всего 0,5‑1,5°. Утомительно жаркие дни сменяют душные, насыщенные влагой ночи, когда относительная влажность, воздуха повышается до 85‑95%.
В экваториальной области всех трех океанов температура поверхностных слоев воды примерно на градус ниже температуры воздуха, что благоприятствует интенсивному испарению, образованию кучевых облаков, частым грозам и ливням. Не случайно вероятность дождливой погоды летом составляет 25‑30%.
Климатические условия тропической и субтропической зон южного полушария во многом сходны с аналогичными условиями северного. Но зато его умеренная зона получила выразительное название «ревущие сороковые». Мореплавателям всего шара известна она своими грозными штормами, вздымающими волны на высоту 15‑20 м. Штормовые районы достигают 55‑58° ю. ш., простираясь по меридиану на расстояние 1500‑2000 км.
Температура воздуха здесь даже летом держится около нуля, опускаясь зимой до минус 10°. Только на северных окраинах зоны температура колеблется в течение года в пределах 6‑10°.
Из густых туч, пеленой застилающих небо, часто моросит дождь или падает снег.
Подобно тому как в атмосфере происходит постоянная циркуляция воздушных масс, в Мировом океане порожденные ветрами, солнцем и вращением Земли течения непрерывно переносят гигантские массы теплой воды к полюсам планеты и холодные потоки в тропическую зону, образуя сложную систему, охватывающую весь Мировой океан (рис. 126).
Крупнейшие системы течений – антициклонические, субтропические низких широт. Необычайно мощные и устойчивые, они простираются в субтропиках от одного побережья океана до другого на расстояние от 6 7 тыс. км в Атлантическом до 14 15 тыс. км в Тихом океане (Степанов, 1974).
Главная роль в образовании поверхностных океанских течений принадлежит ветрам.
Это восточные пассаты – ветры, с завидным постоянством дующие в тропической зоне круглый год с востока на запад, образуют мощные экваториальные течения – Северное и Южное.
Скорость пассатных течений составляет от 15 до 50 см/сек, увеличиваясь по мере приближения к экватору до 100 и даже 200 см/сек (Горский, 1962).
В Атлантике Северное пассатное течение, проникнув в Мексиканский залив, вытекает из него со скоростью 9,35 км/час гигантской «рекой в океане» – Гольфстримом. На подходе к Чесапикскому проливу оно переносит в секунду 75 90 млн. куб. м воды (Дубах, Табер, 1977).
Южное пассатное течение, достигнув берегов Бразилии, устремляется к югу, глубоко проникая в Антарктический бассейн.
Наиболее устойчивыми и быстрыми потоками Мирового океана являются теплые сточные течения: упомянутый Гольфстрим, Гвианское (в Атлантическом океане), Сомалийское (в Индийском океане), Минданао, Куросио и Восточноавстралийское (в Тихом океане). Скорость их составляет 25 50 см/сек, достигая местами 75 100 см/сек (Морской атлас, 1963).
В Индийском океане, в его северной части, муссоны изменяют направление течения с северо восточного на юго западное; Южное пассатное течение у преграждающего ему путь Африканского материка сворачивает на юг.
Умеренную зону южных широт опоясывает медленное, но мощное Антарктическое циркумполярное, или течение Западных Ветров.
Животный мир океана необычайно богат и разнообразен. Его бескрайние просторы населяют рыбы, млекопитающие, моллюски, ракообразные – более 180 тыс. видов животных организмов от почти невесомых радиолярий и фораминифер до многотонных китов.
Особенно богаты жизнью районы слияния холодных и теплых вод – районы неистощимых запасов питательных солей, нитритов и фосфатов. Здесь бурно цветет планктон . А там, где изобилие пищи фитопланктона, там и его потребитель зоопланктон и следующее звено биоценоза – рыбы, питающиеся зоопланктоном.
Иногда окраска воды может сказать опытному глазу гораздо больше, чем справочники по рыболовству и труды по морской зоологии. Так, зеленоватый цвет воды часто свидетельствует о бурном развитии планктона, и, как образно выразился известный американский океанолог Р. Ревелл, «зеленые океанские волны по своему плодородию могут сравниться с лучшими черноземными почвами» (1966).
В то же время кобальтово синие волны красивы, но, увы, безжизненны. Недаром синий цвет называют цветом морской пустыни (Бауэр, 1959).
Растительный мир океанов насчитывает около 15 тыс. видов водорослей (Богоров, 1969). Но из огромного семейства водорослей, среди которых немало съедобных, важнейшее значение имеют диатомовые. Известный французский биолог Франсис Беф писал: «…в конечном счете людям, живущим за счет организмов, которыми кишит морская вода, будь то рыбаки или любители рыбы, не мешает задуматься над тем, что жизнь и поведение диатомовых представляют куда больший интерес и важней, чем повадки акулы или большой морской змеи. Без диатомовых не могут существовать ни веслоногие, ни рыбы, ни акулы, ни киты, ни сами рыбаки» (Francis Boeuf, 1942).
У побережья Северной и Южной Америки, у берегов Африки и Командорских о вов водоросли порой образуют настоящие подводные леса.
А на западе Атлантического океана, между 23 и 35° с.ш., 30 и 68° з.д., гигантским овалом длиной 5 тыс. км, шириной 2 тыс. км раскинулось море без берегов – Саргассово море. Окаймленное тремя течениями – Гольфстримом с запада и севера, Северным пассатным с юга и Канарским с востока, – оно славится идеально тихими погодами, исключительно прозрачной водой и бесчисленными желто бурыми кустиками водорослей, напоминающих гроздья винограда. За это сходство португальские моряки и нарекли эти водоросли именем саргассовых (Sargasso – по португальски сорт мелкого винограда). «Виноградники» – это не что иное, как воздухоносные камеры поплавки, поддерживающие водоросль на поверхности. На 1 кв. км моря приходится до 2 т водорослей (Тарасов, 1949).
ЧЕЛОВЕК В УСЛОВИЯХ АВТОНОМНОГО ПЛАВАНИЯ НА СПАСАТЕЛЬНЫХ ПЛАВСРЕДСТВАХ
С каждым годом все безопаснее становится мореплавание. Разработаны конструкции кораблей, которые обеспечивают их плавучесть при самых тяжелых повреждениях, совершенствуются автоматические системы навигации в сложнейших погодных условиях, создаются надежные средства тушения пожаров и т. д. И все же…
«Сухая» статистика свидетельствует, что в одном только 1970 г. затонуло 352 торговых судна (не считая судов менее 500 т водоизмещения) общим тоннажем свыше 1 млн. т (Артамонов, 1972). По данным Института экономики морского судоходства, в Бремене, с 1972 по 1976 г. исчезло в морской пучине 754 крупных океанских судна. Рекордными оказались 1978 1980 гг. За это трехлетие мировой флот потерял судов общим водоизмещением свыше 5 млн. т (Трагедия в море, 1981). По материалам морского страхового общества Ллойда, в 42% случаев корабли гибнут по навигационным причинам (налетая на рифы и скалу, садясь на мель, сталкиваясь с затонувшими судами), в 22% случаев причиной морских катастроф служат пожары и взрывы, в 17,5% – штормы и тайфуны, в 8% – столкновения. В 8% кораблекрушений обстоятельства оказываются неустановленными, 2,5% судов пропадают без вести (Стенько и др., 1977).
Нередки аварии самолетов над океанскими просторами. Так, по данным Национального бюро безопасности США, с 1964 по 1974 г. зарегистрировано 278 случаев вынужденной посадки самолетов на воду (Snyder, 1974).
Для спасения экипажей и пассажиров судов и самолетов, терпящих бедствие в открытом море, существуют различные индивидуальные спасательные средства – надувные жилеты, воротники, пробковые и капковые спасательные пояса. Однако, поддерживая человека на поверхности воды, не давая ему утонуть, они не могут защитить организм от охлаждения, которое нередко становится причиной его гибели.
Анализ морских катастроф показывает, какую огромную роль в сохранении жизни пассажиров и членов экипажа играют спасательные лодки и плоты. После гибели судна удается спасти лишь 20% из тех, кто оказался в воде, но число спасенных, добравшихся до лодок и плотов, составляет почти 80% (Zorn, 1970).
В наши дни помимо вместительных шлюпок, подвешенных к внушительным шлюпбалкам, придающим романтический колорит морским судам, на палубе вдоль бортов устанавливаются скромные, похожие на металлические бочонки, контейнеры, укрывающие от солнца и дождя надувные резиновые плотики. Появились надувные спасательные плоты на флоте и в авиации совсем недавно. В 1955 г. в Лиссабоне состоялась I Международная конференция по спасательным судам. На ней впервые был поставлен вопрос об использовании надувных плотов в качестве средства помощи при аварии на море. Но только пять лет спустя на II Международной конференции в Лондоне 45 стран участниц подписали конвенцию, по которой автоматически надуваемый резиновый плот был официально признан средством спасения экипажей и пассажиров на судах свыше 500 т водоизмещения наряду со спасательными шлюпками и ботами. В 1967 г. Франция, а впоследствии и другие страны обязали капитанов судов любого класса, вплоть до рыбачьих шхун и прогулочных яхт, иметь на борту надувные спасательные плоты. Без них сегодня портовые власти не выпустят в плавание ни одно судно и ни один самолет, совершающий рейсы над океаном, не поднимется в воздух. Действительно, плоты имеют немало преимуществ перед другими спасательными средствами (лодками, шлюпками и т. п.). Они имеют хорошую остойчивость, обладают высокой «живучестью» и непотопляемостью, просты в эксплуатации и надежно защищают от ветра и холода, солнца и дождя. С помощью автоматического устройства они быстро заполняются углекислым газом из специального баллона, приходя в рабочее состояние. Это особенно важно при вынужденном приводнении сухопутного самолета, когда в распоряжении экипажа и пассажиров остаются считанные минуты, ибо время, в течение которого самолет остается на плаву, крайне ограниченно. Например, для самолета «Дуглас ДС 8» и «Дуглас ДС 7» оно составляет 24 25 минут, а для воздушного лайнера «Локхид 1049 Суперконстеллей шен» – всего 10 минут (Doyll, Roepie, 1965; Ferrugia, 1968).
В северных районах надувной тент хорошо защищает человека от ветра, водяных брызг и дождя, позволяя сохранять одежду сухой. Но что самое главное, температура воздуха в подтентовом пространстве оказывается всегда намного выше наружной. Так, при испытании спасательного плота типа «Пайонир Бофорт» температура воздуха в подтентовом пространстве без применения каких либо средств обогрева была на 4 20° выше окружающей. Еще больше оказалась разница между наружной и внутренней температурами на многоместном спасательном плоту типа TUL, имевшем хорошо загерметизированные индивидуальные коконы для каждого члена летного экипажа (Veghte, 1972).
В 1972 г. советские исследователи провели 5 суток на плотах ПСН 6 в Черном море (рис. 127), и в течение всего эксперимента температура внутри плота не опускалась ниже 16 18°, в то время как температура воды не превышала 4° (Журавлев, 1972).
Но и в жарких тропических районах океана тент играет важную роль, предохраняя человека от губительного действия прямой солнечной радиации. Это наглядно показали данные эксперимента, проведенного нами в тропической зоне Индийского океана в 1967 г. Правда, условия микроклимата на плоту были несколько жестче; чем на открытой шлюпке: температура воздуха, особенно в жаркие дневные часы, была выше наружной на 3,5‑5,4°, а относительная влажность больше на 20‑30%. Кроме того, тент несколько затруднял циркуляцию воздуха, что создавало застой воздушных масс, ухудшал условия теплообмена организма. И все же самочувствие испытуемых, находившихся на плоту, было значительно лучше, чем на лодке. У них отмечалась более высокая работоспособность, они в значительно меньшей степени страдали от жажды и, несмотря на высокую температуру и влажность воздуха, испытывали меньший тепловой дискомфорт.
Субъективные ощущения испытуемых подтверждались данными медицинских наблюдений. Из таблицы 7 видно, что у испытуемых, находившихся на плоту, была несколько ниже температура тела, реже пульс и, что особенно важно, меньшие (почти на 1300 мл) водопотери.
В случае аварии судна, грозящей ему гибелью, пассажиры и экипаж занимают места в шлюпках и плотах согласно расписанию или указанию капитана. При отсутствии специальных устройств, когда обстановка не позволяет разместиться в спасательных средствах непосредственно на палубе, люди спускаются за борт по штормтрапам, тросам с мусингами, с помощью спасательных сеток. При этом необходимо соблюдать строгую очередность, сохраняя интервал между спускающимися, чтобы избежать травм.
При вынужденном приводнении «сухопутного» самолета покидание его и спуск на плоты разрешается лишь после полной остановки самолета. Плавсредства удерживаются у самолета фалом до тех пор, пока все пассажиры и экипаж не разместятся на плавсредствах. Лишь после этого командир экипажа, покидающий самолет последним, перерезает фал ножом.
Лодки и плоты должны отойти на расстояние 200‑300 м от тонущего судна или самолета. Однако при этом продолжается непрерывное наблюдение за окружающим водным пространством, чтобы вовремя обнаружить и сказать помощь людям, не успевшим воспользоваться плавсредствами.
Чтобы лодки и плоты не разносило, их связывают между собой 15‑30‑метровыми фалами.
Когда плавсредства собраны и связаны друг с другом, командир организует оказание медицинской помощи пострадавшим, проверяет, все ли люди налицо, и в случае отсутствия кого‑либо проводит поиск. Чтобы вытащить пострадавшего из воды, его поворачивают спиной к шлюпке, берут под мышки, обхватив грудь, и затем втягивают на борт.
С момента посадки в шлюпки (плоты) все находящиеся в них становятся единым экипажем, который подчиняется командиру, осуществляющему власть, соответствующую статусу капитана морского судна. У командира множество обязанностей и забот. Он не только должен руководить всеми действиями экипажа во время автономного плавания, определять суточную норму воды и пищи, но, главное, постоянно поддерживать в людях оптимизм, уверенность в благополучном исходе плавания, не допуская ссор, уныния и особенно паники. Когда неотложные дела закончены, все дальнейшие работы на плоту командир распределяет между членами экипажа, сообразуясь с их способностями, профессиональными знаниями и наклонностями. С первых же минут на плавсредствах устанавливается круглосуточная непрерывная вахта со сменой через каждые 2 часа. В обязанности вахтенного входит наблюдение за воздухом и океаном, своевременное оповещение командира об изменении метеорологической обстановки, о появлении судов и самолетов, приближении косяков рыбы и акул. Вахтенный также следит за сохранностью запасов воды и пищи.
Совершенно очевидно, что жизнь экипажа во многом зависит от исправности плавсредств. Чтобы избежать случайных повреждений оболочки воздушных камер, все находящиеся на плоту снимают обувь, а колющие и режущие предметы (ножи, крючки и т. п.) складывают в одном месте, завернув в кусок ткани.
Утечка воздуха из камер легко определяется на слух по характерному шипению. При небольшом проколе, порыве оболочки участок вокруг него зачищают наждачной бумагой, смазывают резиновым клеем, а затем накладывают заплату из прорезиненной ткани. Все необходимое для этой цели хранится в специальной ремонтной аптечке, входящей в комплект плота. Более значительные повреждения сперва затыкают резиновыми пробками или металлическими заглушками, чтобы воспрепятствовать большой утечке воздуха, а только после этого производится тщательный, надежный ремонт.
Но даже при отсутствии повреждений воздух все же просачивается через ткань, швы, поэтому камеры приходится периодически подкачивать с помощью насоса или поддувать ртом. Это сделать нетрудно, так как давление, которое может создать человек при сильном выдохе, близко к рабочему давлению (примерно 0,14 атм) внутри камер плота (Меренов, Шмуклер, 1963). Камеры должны иметь округлую форму, но не быть тугими, словно футбольный мяч. Поскольку в жаркое время суток воздух расширяется, его рекомендуется немного стравливать. В холодную же погоду необходимо периодически камеры подкачивать. При сильном волнении, чтобы придать плоту большую остойчивость, а шлюпку развернуть носом против волны и замедлить дрейф, за борт спускают плавучий якорь. Это нехитрое устройство, напоминающее небольшой парашютик, надежно делает свое дело. Чтобы шнур якоря не протер ткань оболочки, его у места прикрепления обертывают тряпкой или бинтом. В случае переворачивания плота, чтобы восстановить его нормальное положение, через днище перебрасывают фал, прикрепленный к противоположному борту, а затем тянут его на себя. При отсутствии подходящего фала рекомендуется взобраться на днище плота, ухватиться за борт, а затем, соскользнув в воду, постараться опрокинуть его на себя.
СИГНАЛИЗАЦИЯ И СВЯЗЬ
Чтобы привлечь внимание проходящих судов, самолетов, на спасательных лодках и плотах всегда хранится запас сигнальных средств: ракет, дымов, фальшфейеров. Но ими надо пользоваться разумно, лишь тогда, когда есть полная уверенность, что сигнал бедствия будет замечен. Днем это надо делать только тогда, когда судно подойдет на расстояние 4‑6 км. В ночное время ракеты и сигнальные огни хорошо видны с дистанции 12‑18 км. Чтобы частицы горящего вещества из фальшфейера или сигнального патрона не попали на ткань плота и не прожгли ее, патрон держат на вытянутой руке за бортом с подветренной стороны (рис. 128).
При работе с аварийной радиостанцией следует тщательно оберегать ее от попадания воды. Морская соль, отложившись на сочленениях телескопической антенны, на местах стыковки кабеля может серьезно нарушить работу станции и даже вывести ее из строя.
Для подачи сигнала бедствия самолету пользуются специальными красящими порошками – флуоресциином, уранином. Пакет с порошком, освобожденный от водонепроницаемой оболочки, привязывают шнурком к поручню или петле и опускают за борт. Порошок, быстро растворяясь в воде, образует на ее поверхности ярко‑зеленое флуоресцирующее пятно. Оно отчетливо видно с высоты 3 тыс. м и порой замечается раньше, чем плот или лодка (Gilbert, 1968). В штилевую погоду цветное пятно держится 2‑3 часа, однако стоит усилиться ветру и волнению и оно исчезает через 15‑20 минут.
Весьма эффективным в условиях плавания в океане оказывается сигнальное зеркало. Вспышки «солнечного зайчика» принимаются на расстоянии 10‑15 км.
АВТОНОМНОЕ ПЛАВАНИЕ В ОКЕАНЕ
Как долго может продержаться человек на спасательных плавсредствах в океане при ограниченных запасах пищи и воды? Во время автономного плавания ему придется противостоять не только разбушевавшимся стихиям. Ему будут угрожать солнце и холод, голод и жажда. Однако не они зачастую ведут к трагическому исходу. Тысячи людей, оказавшихся на спасательных шлюпках и плотах, умирают, даже не израсходовав запасов воды и пищи. Что же стало причиной их гибели? «Жертвы легендарных кораблекрушений, погибшие преждевременно, я знаю: вас убило не море, вас убил не голод, вас убила не жажда! Раскачиваясь на волнах под жалобные крики чаек, вы умерли от страха» – к такому выводу пришел французский врач Ален Бомбар, изучив многочисленные случаи морских катастроф. И вот, чтобы доказать, что главным оружием человека в борьбе с океаном являются мужество, воля, уверенность в благоприятном исходе автономного плавания, он отважно пустился в путь по волнам океана без пищи и воды. На маленькой надувной резиновой шлюпке, названной «Еретик» Бомбар 19 октября 1952 г. покинул порт Лас‑Пальмас на Канарских о‑вах, держа курс к берегам Америки. 65 суток, полных опасностей и лишений, питаясь лишь пойманной рыбой, утоляя жажду рыбьим соком и дождевой водой, провел он в океане. С честью выдержав все испытания, Бомбар 23 декабря 1952 г. ступил на берег острова Барбадос.
А ровно три года спустя по пути Бомбара отправился из Лас‑Пальмаса на пироге либерийский врач Ханнес Линдеманн. Два с лишним месяца длилась борьба мореплавателя с океаном. Но одержанная победа не удовлетворила отважного либерийца. Прошел всего год, и он снова вышел в океан на пятиметровой байдарке навстречу опасностям. Тяжелые испытания выпали на его долю. 15 декабря шквал опрокинул маленькую «Либерию‑III”, и лишь к утру ценой невероятных усилий, почти теряя сознание, Линдеманну удалось перевернуть байдарку и взобраться в нее. Истощенный, до предела измученный, он упорно боролся за жизнь. И победил.
Через 72 дня он высадился на о. Сен‑Мартен и после двухдневного отдыха двинулся дальше, к конечной цели путешествия – о. Сент‑Томас.
Плавания А. Бомбара и X. Линдеманна – это гимн человеческому мужеству и бесстрашию. Они шли на смертельный риск во имя высокой гуманной цели, во имя спасения человека. И возможно, их героический пример вдохновил на борьбу немало людей, которых случай поставил «один на один» с океаном. И таких примеров вписано немало в летопись мореплавания.
Всему миру стал известен подвиг четырех советских воинов – Асхата Зиганшина, Филиппа Поплавского, Анатолия Крючковского и Ивана Федотова, унесенных в Тихий океан на самоходной барже. 49 суток в зимнем штормующем океане провели они почти без воды и пищи и все же выстояли до конца.
Поразительную стойкость и мужество проявили супруги Бейли. Потеряв при столкновении с китом свою яхту «Орилин», они оказались вдвоем среди океана на крохотной резиновой лодочке. 117 дней скитались они по волнам, прежде чем их подобрал проходящий мимо теплоход. 38 суток вела неравную борьбу с океаном семья английского фермера Робертсона. 47 суток в океане сражались со смертью три уроженца острова Рота. Благополучно закончился месячный дрейф бразильского рыбака Эугение Алмиано. 24‑дневные испытания голодом и жаждой выдержал экипаж яхты «Бичкамбер», спасенный советским теплоходом «Шота Руставели» в Тихом океане.
ВОДООБЕСПЕЧЕНИЕ В ОКЕАНЕ
Человеку, оказавшемуся на борту спасательной шлюпки в тропиках, некуда укрыться от тепла, поступающего со всех сторон: с прямой солнечной радиацией, с лучами, отраженными от зеркальной глади океана, от нагретой солнцем оболочки лодки. По наблюдениям, выполненным во время экспедиции в Индийском океане в 1967 г. на «Витязе», среднесуточная суммарная солнечная радиация за 3 месяца плавания составляла 481‑544 кал/кв. см.
По данным Ю.М. Стенько (1965), на каждый квадратный сантиметр поверхности приходится 0,9‑1,5 кал/мин. Таким образом, человек, находящийся на солнцепеке, в течение дня получает извне огромное количество тепла.
В борьбе с перегревом организм использует все защитные механизмы, и в первую очередь потовыделительную систему, которая работает с максимальным напряжением. Водопотери на солнце в тропической зоне океана иногда достигают 740‑810 г/час (Просецкий, 1966). Однако с каждой каплей теряемого пота возрастает угроза обезвоживания. Возникает парадоксальная ситуация. С одной стороны, организму необходимо обеспечить охлаждение с помощью пота, а с другой – потоотделение увеличивает обезвоживание, ибо потери жидкости нечем восполнить. Вместе с тем существует простой метод, с помощью которого можно снизить потоотделение и в то же время обеспечить охлаждение организма: достаточно смочить одежду забортной водой, и она, испаряясь, возьмет на себя охлаждающую функцию пота.
Чтобы проверить эффективность этого метода, мы провели экспериментальные исследования во время экспедиций на научно‑исследовательских судах «Михаил Ломоносов» и «Витязь» в 1964‑1975 гг. Результаты исследований представлены в таблице 8. В каждой серии экспериментов пять испытуемых находились в течение трех часов на открытой палубе. Ежечасно проводилось взвешивание на медицинских весах. Величина водопотерь определялась по изменению массы тела. Радиационные температуры регистрировались по зачерченному шаровому термометру. Исследования показали, что обнаженный человек на солнцепеке при температуре 45‑50° (по шаровому термометру) теряет 420 ± 15 мл жидкости за один час (1,2‑1,4 л за три часа).
Во второй серии экспериментов испытуемые размещались под тентом из белого капрона. Эта небольшая теневая защита несколько снизила водопотери, составившие 230 ± 15 мл/час.
В третьей серии испытуемые, находившиеся на солнцепеке, были одеты в белые трикотажные рубашки с длинными рукавами, смоченные водой. По мере высыхания одежда периодически увлажнялась. При взвешивании выяснилось, что водопотери потоотделением уменьшались до 170 ± 13 мл/час. При этом самочувствие испытуемых и их теплоощущения значительно улучшились (Волович, Усков, 1967). Однако при длительном воздействии высоких температур все применяемые меры снижения водопотерь хотя и замедляют процесс дегидратации, но не могут его остановить. Так, во время многосуточных экспериментов, проводившихся на спасательных лодках и на палубе корабля при радиационной температуре 40‑52°, относительной влажности воздуха 80‑96%, уже за первые сутки испытуемые теряли в среднем 2787 ± 453 мл жидкости.
Поскольку суточная норма воды была ограничена до 0,8 л и не компенсировала водопотерь потоотделением, суммарные потери жидкости после пяти суток эксперимента составили в среднем 5674 ± 560 мл. В результате у испытуемых развилось обезвоживание организма, составившее 8,0‑8,5% от первоначальной массы тела.
Этот процесс сопровождался тепловой олигурией. Суточное мочеотделение снизилось с 1108 ± 101 мл до 670‑370 мл.[1]
Наряду с этим мы наблюдали снижение содержания в моче электролитов. Так, например, на пятые сутки эксперимента суточное выведение натрия снизилось по сравнению с фоном со 121,32 ± 15,73 до 15,3 ± 3,4 ммоль, а содержание хлора уменьшилось почти в 12 раз (со 162,8 ± 17,5 до 8,1 ± 2,1 ммоль).
И вместе с тем организм не испытывал натриевого голодания. Об этом свидетельствовала стабильность содержания натрия в крови в течение всего эксперимента (320‑350 ммоль/л).
Хотя изменения калиуреза были менее значительными (количество калия в суточной моче уменьшилось с 32,17 ± 3,9 до 21,8 ± 2,0 ммоль), его содержание в плазме крови неуклонно снижалось и составляло на пятые сутки эксперимента 13,0 ± 1,0 ммоль (фон – 20,0 ± 1,0 ммоль). Причина этого явления заключается, по‑видимому, в отсутствии физиологических компенсаторных механизмов, быстро устраняющих нарушения обмена калия в организме. Даже на вторые сутки после окончания эксперимента содержание калия в плазме оставалось на низких цифрах.
При самом строгом режиме экономии воды рано или поздно наступает минута, когда запасы ее приходят к концу.
Тяжелы страдания от жажды путника, заблудившегося в пустыне, но тысячекратнее муки его в океане. Человек видит сверкающую водную гладь, слышит шепот волн, ощущает освежающее прикосновение брызг – и не может утолись жажду.
Правда, хроника морских катастроф знает случаи, когда жертвы кораблекрушений использовали морскую воду для сохранения жизни. Почти 70 суток утолял жажду океанской водой Пун Лим, моряк американского транспортного судна, торпедированного японцами во время второй мировой войны. Морская вода помогла выжить молодому флотскому врачу П. Ересько, 37 дней находившемуся в шлюпке в Черном море без пресной воды (Ересько, 1945; Ермолович, 1962).
«Если считать со времени отплытия из Монако, – писал Ален Бомбар, – то в течение четырнадцати дней я утолял жажду морской водой».
«Я выпивал не меньше двух кружек морской воды и не испытывал от этого ни малейшего вреда», – отмечал в своем дневнике бесстрашный мореплаватель‑одиночка, капитан бальсового плота «Севен систерз» Уильям Уиллис (1959).
Казалось бы, что доводы Бомбара, Уиллиса и случаи, когда морская вода использовалась людьми, бедствовавшими в океане, достаточно убедительны. Однако Ханнес Линдеманн после опубликования рекомендаций Бомбара в печати выступил с резким возражением: «С тех пор как существует человечество, всем известно, что пить морскую воду нельзя. Но вот в Европе появилось сообщение об исследовании, утверждающем обратное, при условии, что организм еще не обезвожен. В газетном лесу оно расцвело пышным цветом и получило горячий отклик у дилетантов. Конечно, морскую воду можно пить, можно и яд принимать в соответствующих дозах. Но рекомендовать пить морскую воду потерпевшим кораблекрушение – по меньшей мере преступление» (Lindemann, 1960).
Эксперименты, которые провели в лаборатории французские военно‑морские врачи Ж. Ори в 1954 г. и С. Лонже в 1957 г., не внесли ясности в эту проблему. С одной стороны, изменения, обнаруженные у испытуемых‑добровольцев, пивших морскую воду небольшими порциями в течение 3‑5 дней, оказались незначительными: несколько возрастало содержание в крови натрия, хлора, мочевины, чуть снизился щелочной резерв крови, а с другой – объем выделенной мочи значительно превышал количество выпитой воды.
Но пожалуй, самым ярким доказательством токсического действия морской воды стал результат работы английских исследователей. Они тщательно изучили и проанализировали 448 случаев катастроф, постигших британские торговые суда во время второй мировой войны. Значительной части матросов и пассажиров из 27 тыс. человек, находившихся на борту этих судов, удалось спастись. Многим помощь была оказана сразу же после катастрофы. Но примерно 5 тыс. человек еще много дней после кораблекрушения носило по волнам в спасательных шлюпках и на плотах. И вот оказалось, что из 977 человек, утолявших жажду морской водой, погибло 387 (38,8%). В то же время из 3994 моряков, не употреблявших для питья соленую воду, умерло лишь 133 (3,3%) (McCance, Ungly, Grossfill, Widdowson, 1956). Если даже принять во внимание, что часть людей погибла по другим причинам, что в первой группе некоторые люди не пили морской воды, а во второй находились моряки, соблазнившиеся морской водой, все же приведенные цифры весьма убедительны.
В составе морской воды преобладают хлориды (88,7%), меньшую долю составляют сульфаты (10,8%) и карбонаты (0,3%). На все прочие соединения приходится лишь 0,2%. Общий вес всех солей в граммах, растворенных в одном килограмме воды, называется соленостью. Что поразительно, так это постоянство солевого состава, на которое указывает одно и то же для всех участков океана значение так называемого хлорного коэффициента – отношения общего количества солей, растворенных в воде, к содержанию хлора (Муромцев, 1956). Вместе с тем соленость морских и океанских вод неодинакова. Иногда солей совсем немного, всего 3‑4 г на 1 л воды, как, например, в Финском заливе. В Азовском и Черном морях их несколько больше – 10‑18 г/л. В океанах содержание солей возрастает до 32‑35 г/л. Более 40 г соли содержится в каждом литре воды Красного моря.
Одно из удивительных свойств человеческого организма – умение сохранять гомеостаз – постоянство своей внутренней среды. За этим бдительно следят бесчисленные живые датчики – хеморецепторы, барорецепторы, терморецепторы. За концентрацией различных веществ, растворенных в жидких средах организма, плазме крови, лимфе, межклеточной жидкости, наблюдают свои дозорные – осморецепторы.
Обычно с пищей человек получает примерно 15‑25 г соли в день, главным образом хлористого натрия. Этого количества достаточно для удовлетворения его потребностей. Но едва организм получит излишек солей, как осморецепторы немедленно поднимут тревогу и не успокаиваются до тех пор, пока утраченное равновесие не будет восстановлено. Избыточные соли выводятся через почки, на которых лежит обязанность обеспечить осмотический гомеостаз. По данным В. Леделла (Ladell, 1965), прием 500,0 мл 3‑4%‑ного раствора соли увеличивает мочеотделение с 0,36 до 1,56 мл/мин, т. е. почти в 5 раз.
Известно, что на каждый грамм веществ, образующихся в результате процессов обмена, в том числе солей, необходимо не менее 50 мл жидкости (максимальная концентрация мочи – 2%). Следовательно, чтобы удалить 3,5 г солей, поступивших со 100 мл океанской воды, требуется израсходовать примерно 150 мл жидкости, т.е. израсходовать дополнительно к выпитой еще 50 мл из внутренних резервов. Если даже согласиться с мнением А. Гембла (Gamble, 1944), В. Леделла (Ladell е. а., 1955) и других ученых, что часть солей усваивается и потому 15‑20% выпитой воды все же остается в организме, то для удовлетворения его потребностей в жидкости придется ежедневно выпивать 8‑10 л горько‑соленой океанской влаги. Возможно ли это? Справятся ли почки с такой огромной солевой нагрузкой?
Чтобы вывести из организма соли, растворенные в 1 л океанской воды, почки затрачивают 970 кал (Margaria, 1957), значит, на 8‑10 л потребуется 7760‑9670 кал. Максимальная же теоретическая работоспособность почек составляет всего 5670 кал/сутки. Кроме того, и это нельзя не учитывать, концентрационная способность почек при длительной солевой нагрузке постепенно снижается. В результате почки рано или поздно перестают справляться с непосильной работой, и тогда концентрация солей в крови и тканях начнет стремительно нарастать. В результате поражаются почки, желудок, кишечник. Но особенно уязвима к действию солей центральная нервная система (Hervey, 1955). Вот почему среди людей, потерпевших кораблекрушение и не выдержавших соблазна утолить жажду океанской водой, так часто наблюдались психические расстройства, сопровождающиеся попытками к самоубийству.
Вот как описывает картину гибели человека от интоксикации, вызванной океанской водой, английский врач М. Кришли:
«Жажда утоляется лишь очень ненадолго, и по истечении короткого промежутка времени человек испытывает еще большую потребность в воде. Затем он затихает, его охватывает апатия, глаза стекленеют, губы, рот и язык высыхают, появляется специфический неприятный запах изо рта. Часа через два у человека начинается бред, сначала спокойный, потом лихорадочный. Сознание затемняется, в уголках губ появляется пена, цвет лица меняется. Агония, как правило, протекает бурно, и человек умирает, не приходя в сознание» (Critchley, 1943).
Несмотря на запреты и неприятный горько‑соленый вкус, люди, мучимые жаждой, все же пьют океанскую воду, но то небольшое облегчение, которое они чувствуют вначале, лишь маскирует разрушительное действие солей на клетки и ткани организма.
И все же спор между сторонниками и противниками морской воды продолжался. Более того, после опубликования в печати рекомендаций А. Бомбара и экспериментальных данных Ж. Ори среди моряков стало распространяться убеждение, что вредность питья морской воды преувеличена.
В связи с этим Комитет по безопасности мореплавания в 1959 г. обратился к Всемирной организации здравоохранения с просьбой высказать свое компетентное заключение по этой проблеме.
В Женеву были приглашены видные специалисты по проблеме выживания в океане, биологи и физиологи – Р.А. Маккене и Ф.В. Баскервиль из Англии, швейцарец Ж. Фабр, француз Ш. Лабори и американец А.В. Вольф. Эксперты обстоятельно изучили материалы многочисленных экспериментов на людях и лабораторных животных, проанализировали случаи использования морской воды терпящими бедствие и пришли к единодушному мнению, что морская вода разрушительно действует на организм человека. Она вызывает глубокие расстройства многих органов и систем (The Danger of drinking Seawater, 1962).
Поэтому памятками и инструкциями для моряков и летчиков питье морской воды в условиях автономного пребывания на спасательных лодках и плотах запрещено.
Так чем же утолить жажду при отсутствии пресной воды?
Рыбьим соком, советует Ален Бомбар.
Сколько же потребуется рыбы, чтобы влагой, содержащейся в ее мышцах, напоить человека, страдающего от жажды?
Тело рыбы почти на 80% состоит из воды. Но чтобы извлечь ее, необходимо специальное приспособление, нечто вроде портативного пресса. Однако даже с его помощью отжать удается не так уж много воды. Например, из 1 кг морского окуня можно получить лишь 50 г сока, мясо корифены дает около 300 г, из мяса тунца и трески можно нацедить до 400 г мутноватой, пахнущей рыбой жидкости. Возможно, этот «напиток», не очень приятный на вкус, и помог бы решению проблемы, если бы не одно серьезное «но» – высокое содержание в нем веществ, небезразличных для организма человека. Так, в одном литре необезжиренного рыбьего сока содержится 80‑150 г жира, 10‑12 г азота, 5‑80 г белков и до 450 мэкв солей натрия, калия и фосфора.
Как же будет на них реагировать организм?
Ответ на этот вопрос попытался получить английский ученый С. Хантер. Восемь испытуемых поместили в тепловую камеру и в течение первых двух суток давали по 250 мл воды. На третьи сутки, когда у всех участников эксперимента появились выраженные признаки обезвоживания, четырем из них выдали дополнительно по одному литру рыбьего сока.
Выпитый рыбий сок вызвал значительное (до 1005 мл) увеличение суточного диуреза. Следовательно, почти вся выпитая жидкость была использована организмом на удаление веществ, содержащихся в соке. У четырех испытуемых (контрольной группы) суточное количество мочи составляло лишь 608 мл, однако на ее образование организм затратил дополнительно 358 мл жидкости из своих внутренних резервов. Следовательно, выпитый рыбий сок способствовал некоторому сбережению эндогенных запасов воды, поскольку потоотделение у всех восьми испытуемых осталось на прежнем уровне (Hanter, 1957). Результаты эксперимента, проведенного С. Хантером, показали, что при отсутствии пресной воды рыбий сок может в какой‑то мере облегчить положение людей, терпящих бедствие в океане.
Многочисленные памятки и инструкции для терпящих бедствие в океане рекомендуют: собирайте в ночное время росу, пополняйте запасы пресной воды за счет дождя. Дожди нередки в тропиках. В них ваше спасение. Так ли это? Ален Бомбар приветствовал первый дождь лишь на 23 сутки плавания. Уильям Уиллис за 116 дней путешествия на плоту воспользовался небесной влагой один раз, да и то лишь на 76 сутки после выхода из порта Кальяо, а по свидетельству Алена Брэна, соратника Эрика де Бишопа по экспедиции в Тихом океане на плоту «Таити‑Нуи», «против всех ожиданий, за два с половиной месяца плавания не выпало ни одного хорошего дня» (Даниельссон, 1962: Де Бишоп, 1966).
Итак, дождь, роса, рыбий сок – все это источники, на которые трудно полагаться с уверенностью. Правда, на спасательных шлюпках всегда имеется запас пресной воды. Но в жарком климате вода не может сохраняться подолгу в деревянных бочонках и «зацветает», приобретая неприятный запах и вкус. Ее часто приходится заменять свежей. Это хлопотно, да к тому же на кораблях, подолгу плавающих в тропиках, запас питьевой воды и без того всегда ограничен.
В последние десятилетия на смену флягам и анкеркам пришли «водяные консервы». Воду после специальной обработки заключали в запаянные жестяные банки по 300‑500 мл. Там она могла сохраняться многие месяцы. Но много ли банок можно уложить на маленький спасательный плот?
И снова взоры моряков и ученых обратились к морской воде. Если ее нельзя пить такой, какая она есть, то надо избавиться от того, что делает ее опасной, – от солей. Например, соорудить перегонный куб и гнать опресненную, дистиллированную воду, используя солнечное тепло. Стоило родиться идее, и как грибы после дождя появилось целое семейство разнообразных «перегонных устройств» для терпящих бедствие в океане.
Уже во время второй мировой войны стали выпускаться дистилляторы в виде цилиндров, выстланных изнутри слоем черной губки, которую пропитывали морской водой. Вода нагревалась солнцем, и охлажденный пар стекал в водосборник. Такие устройства давали до 0,7 л воды в сутки (Fetcher, 1945).
Один из наиболее распространенных дистилляторов сконструирован в виде шара из прозрачного пластика. Внутри его находится второй шар несколько меньших размеров, сделанный из черного материала. Дистиллятор надо заполнить морской водой, надуть воздухом и, привязав к лодке пустить гулять по волнам. Солнце нагревает воду, пар проходит по системе трубок и, оседая на стенках, каплями пресной воды сбегает в пластиковый резервуар (рис. 129). Однако прибор этот страдает одним весьма существенным недостатком: в пасмурный день и в ночное время он бездействует.
Остроумный выход из положения нашли конструкторы английской фирмы «Дэнлоп». Их дистиллятор, выполненный в виде сферы из прозрачного материала, имеет в нижней части специальную чашу, обрамленную тепловым экраном из черной пленки. Когда дистиллятор опускают за борт, между верхней его частью, обдуваемой воздухом, и нижней, находящейся в воде, создается разность температур. Вода в чаше начинает испаряться и, конденсируясь на внутренней поверхности верхней полусферы, стекает в водосборник, из которого ее можно отсасывать через специальную трубку. Новый дистиллятор действует в любую погоду, днем и ночью и дает до 1,5 л воды в сутки.
Химики предложили опреснять морскую воду с помощью препаратов, которые вступали в химическую реакцию с растворенными в ней солями, образуя нерастворимые соединения. Для этой цели широко используются природные минеральные вещества – цеолиты. Они обладают способностью связывать положительно заряженные молекулы солей натрия, калия, кальция, магния, выпадая в нерастворимый осадок. Чтобы избавиться от молекул хлора, к цеолитам, добавляют препараты серебра.
Для получения пресной воды резиновый мешочек заполняют морской водой и, добавив измельченный препарат, встряхивают минут 10‑15.
Еще более высокую способность к ионному обмену имеют искусственные высокомолекулярные соединения – ионообменные смолы.
Химическими опреснителями ныне снабжены индивидуальные и коллективные аварийные укладки для летчиков и моряков во всем мире. С помощью одного такого комплекта ХО‑2 можно, например, опреснить до 3,5 л морской или 1,5 океанской воды.
Однако ни солнечные дистилляторы, ни химические опреснители не могут кардинально решить проблему водообеспечения терпящих бедствие в океане. Поэтому усилия специалистов разных стран направлены на создание высокоэффективных устройств многоразового действия, которые могли бы снабдить людей необходимым количеством пресной воды в течение всего времени автономного плавания на спасательных плавсредствах. Одним из наиболее перспективных путей является создание так называемых селективных мембран, позволяющих задерживать при фильтрации соленой воды молекулы растворенных в ней солей. Такого рода мембраны в 80‑х годах были изготовлены в университете английского города Уорвика из натриево‑боросиликатного стекла с порами диаметром до двух миллионных частей миллиметра. С 1 кв. м такого стекла удавалось получать до 3,5 куб. м пресной воды за сутки («Стекло фильтрует воду», 1980).
Как же должен себя вести экипаж, оказавшийся на спасательной лодке или плоту в тропической зоне океана?
Не пить первые сутки после аварии, экономить пресную воду, помня, что 500‑600 мл воды в сутки – рацион, которого хватит на 5‑6 дней без особых последствий для организма. Находясь на открытой шлюпке, необходимо сделать самую примитивную теневую защиту от солнечных лучей (рис. 128). Смачивать в жаркое время суток одежду забортной водой, помогая организму сохранить внутренние резервы жидкости, но не забывать высушить ее до захода солнца. Ограничить до минимума физическую работу в жаркие дневные часы. Никогда, ни при каких обстоятельствах не пить морскую воду.
Поскольку прямые и отраженные солнечные лучи легко поражают чувствительные участки кожи вокруг губ, ноздрей, век, вызывая болезненные ожоги, все эти уязвимые места необходимо в дневное время смазывать солнцезащитным кремом или заклеивать липкий пластырем. В яркие солнечные дни надежно защитят глаза от раздражения очки‑светофильтры.
ВЫЖИВАНИЕ В ХОЛОДНОЙ ВОДЕ
В апреле 1912 г. гигантский лайнер «Титаник», следовавший из Ливерпуля в Нью‑Йорк, столкнулся в Атлантическом океане с айсбергом и затонул. Прошло всего 1 час 50 минут, как спасательные суда, приняв сигнал бедствия, уже прибыли на место катастрофы. Они подняли на борт людей, находившихся на шлюпках. Но ни одного из 1489 пассажиров, оказавшихся в воде, спасти не удалось (Mersey, 1912).
Из 720 погибших во время авиационных катастроф американских рейсовых самолетов за 10 лет (с 1954 по 1964 г.) 71 человек стал жертвой холодной воды (Doyl, Roepie, 1965).
Во время второй мировой войны 42% немецких летчиков, сбитых над арктическим водным бассейном, погибало от переохлаждения за 25‑30 минут (Matthes, 1950).
Известно, что организм человека, находящегося в воде, охлаждается, если ее температура ниже 33,3° (Joiner, 1978). Однако даже наиболее теплые поверхностные воды Мирового океана в тропической зоне имеют температуру 29‑30°. При этой температуре, по данным медицинского исследовательского института ВМФ в США, теплопотери обнаженного человека не являются ограничивающим фактором только в течение первых 24 часов. Вместе с тем более 77% поверхностных вод Атлантического океана, 62% – Индийского и 59% – Тихого имеют температуру ниже 25° (Beckman е. а., 1966). Следовательно, в подавляющем большинстве случаев время безопасного пребывания людей, оказавшихся в воде в результате тех или иных коллизий, будет ограничено скоростью охлаждения организма. Поскольку теплопроводность воды почти в 27 раз больше, чем воздуха, процесс охлаждения идет довольно интенсивно. Например, при температуре воды 22° человек за 4 минуты теряет около 100 калорий, т. е. столько же, сколько на воздухе при той же температуре за час. В результате организм непрерывно теряет тепло, и температура тела, постепенно снижаясь, рано или поздно достигнет критического предела, при котором невозможно дальнейшее существование.
Конечно, скорость этого процесса зависит не только от температуры воды. Важное значение будет иметь физическое состояние человека и его индивидуальная устойчивость к низким температурам, теплозащитные свойства одежды на нем, толщина подкожно‑жирового слоя. Последнему фактору некоторые физиологи придают большое значение.
Так, путем экспериментальных исследований было установлено, что теплопроводность участка свежевырезанной поверхности ткани человека с жировой прослойкой 1 см составляет 14,4 ккал/кв. м/час/°С, теплопроводность участка, лишенного подкожно‑жировой клетчатки, – 39,6 ккал/кв. м/ час/°С. Ученым удалось выявить линейную зависимость между скоростью охлаждения и толщиной подкожно‑жировой клетчатки у человека (Cannon, Keeting, 1960; Beckman е. а., 1966).
Важная роль в активном снижении теплопотерь организма принадлежит сосудосуживающему аппарату, обеспечивающему уменьшение просвета капилляров, проходящих в коже и подкожной клетчатке (Beckman, Reevs, 1966).
Достаточно кратковременного пребывания в воде с низкой температурой, чтобы наступили отчетливые нарушения в деятельности организма. Так, у 124 испытуемых, помещенных в ледяную воду, через 240 секунд скорость восприятия снизилась с 4,3 ± 0,1 до 2,9 ±0,1 бит.[1] Скорость письма замедлилась с 51,3 ± 1,3 до 221,9 ± 18 секунд. При этом существенно изменился почерк, увеличилось число пропусков и повторений слов, удлинились разрывы между буквами (Чусов, 1977).
Уже при температуре воды 24° время безопасного пребывания измеряется всего 7‑9 часами (Carlson et al., 1953), при 5‑15° оно уменьшается вдвое. Температура 2‑3° оказывается смертельной через 10‑15 минут, а при минус 2° – не более 5‑8 минут (Arends, 1972; Weis, 1974). Конечно, эти сроки не абсолютны и могут варьировать в ту или иную стороны. По данным Р. Мак‑Кенса, во время морских катастроф, происшедших в районах с низкой температурой воды (минус 1,1 – плюс 9°), гибель матросов и пассажиров наступала в течение 5‑20 минут (Mc Cance et al., 1956). П. Вайтингем, Е. Ферруджиа и другие считают, что при температурах 0‑10° время безопасного пребывания ограничивается 20‑40 минутами (Whittingham, 1965; Ferrugia, 1968, и др.). Однако при отсутствии необходимой медицинской помощи жертвы кораблекрушений, добравшиеся до шлюпок, в 17% случаев погибают в последующие 8‑12 часов от расстройств дыхания и кровообращения (Pittman et al., 1969).
Основной причиной смерти людей в холодной воде является переохлаждение, так как тепла, вырабатываемого организмом, недостаточно, чтобы возместить теплопотери.
Однако смерть настигает человека, оказавшегося в холодной воде, иногда гораздо раньше, чем наступило переохлаждение. Причиной ее может быть своеобразный «холодовый шок», развивающийся иногда в первые 5‑15 минут после погружения в воду (Beckman, Reevs, 1966), или нарушение функции дыхания, вызванное массивным раздражением холодовых рецепторов кожи (Keeting et al., 1963). Крайне осложняет спасение человека в холодной воде быстрая потеря тактильной чувствительности. Находясь рядом со спасательной лодкой, терпящий бедствие иногда не может самостоятельно забраться в нее, так как температура кожи пальцев падает до температуры окружающей воды (Hsien et al., 1964; Fox,1967).
И в то же время можно привести примеры поразительной устойчивости человека к холодной воде.
1 марта 1895 г. Фритьоф Нансен и Фридрих Иогансен, покинув дрейфующий во льдах «Фрам», отправились на лыжах к Северному полюсу. Встреченные на 80° с.ш. непроходимыми льдами, они повернули обратно. Перезимовав на одном из островов Земли Франца‑Иосифа, путешественники двинулись на юг. После многодневного пути по дрейфующим льдам они добрались до края ледяного поля. Между ними и ближайшей сушей лежали десятки миль чистой воды. Спустив на воду нарты‑каяки, они только к вечеру пристали к льдине, чтобы поразмяться. Но не успели взобраться на торос, как вдруг Иогансен воскликнул: «Каяки уносит!» Путешественники бросились вниз, но каяки отплыли уже на несколько десятков метров и быстро удалялись.
– Держи часы! – крикнул Нансен, сбрасывая с себя на бегу одежду, чтобы легче было плыть.
Вот как описывает Ф. Нансен дальнейшие события:
«Снять с себя все я, однако, не рискнул, боясь закоченеть. Я прыгнул в воду и поплыл. Ветер дул со льда и без труда уносил каяки с их высокими снастями. Они отошли уже далеко и с каждой минутой уплывали дальше. Вода была холодная, как лед, плыть в одежде было очень тяжело, а каяки все несло и несло ветром, куда быстрее, чем я мог плыть. Казалось более чем сомнительным, чтобы мне удалось их догнать. Но вместе с каяками уплывали все наши надежды: все наше достояние было сложено в каяках, мы не взяли с собой даже ножа. Так не все ли равно: пойду я, окоченев, ко дну или же вернусь назад без каяков?
Я напрягал все силы, устав, повернулся и поплыл на спине… С каждой минутой, однако, руки и ноги коченели, теряли чувствительность. Я понимал, что скоро уже не в силах буду двигать ими. Но теперь было не так далеко. Только бы выдержать еще немного, и мы будем спасены… И я держался. Вот наконец я смог достать одну из лыж, лежавшую поперек кормы. Я ухватился за нее, подтянулся к краю каяка и подумал: «Мы спасены».
Затем я попытался влезть в каяк, но закоченевшее тело не слушалось меня. Через несколько секунд удалось‑таки закинуть одну ногу за край стоявших на палубе нарт и кое‑как вскарабкаться наверх. И вот я на каяке. Тело окоченело до такой степени, что я почти не в силах был грести… Я дрожал и стучал зубами, готовый потерять сознание, но продолжал все же работать веслами, смутно понимая, что смогу согреться к тому времени, когда пристану ко льду» (Нансен, 1956).
Иогансен сделал все, что мог, чтобы согреть товарища, и скоро горячий суп из кайры изгладил все следы происшествия, чуть было не ставшего роковым для героических норвежцев.
В литературе описано немало случаев длительного пребывания человека в холодной воде при температуре, близкой к нулю, без каких‑либо серьезных последствий от переохлаждения (Critchley, 1943, и др.).
В ноябре 1962 г. летчик И.Т. Куницын, катапультировавшийся после аварии самолета над Баренцевым морем, в течение 12 часов греб руками, добираясь до ближайшего островка на спасательной надувной лодке. Не обнаружив на нем никаких средств для поддержания жизни, он снова отправился в путь, продолжавшийся около 40 часов. Несмотря на низкую температуру воздуха и воды (4‑6°), мокрую одежду, у него на третьи сутки после спасения было установлено лишь умеренное общее охлаждение организма, ознобление и отморожение первой степени верхних и нижних конечностей.
Еще более поразительным является случай с летчиком Валентином Смагиным, который академик АМН СССР Г. Сидоренко отнес к «исключительным в медицинской практике. И исключительность эта, без сомнения, следствие необычайных волевых качеств офицера».
Заполярная осень уже вступила в свои права. Экипаж, выполнив задание, возвращался на свой аэродром. Вдруг в наушниках коротко, как удар хлыста, прозвучал дважды повторенный приказ командира: «Второму штурману покинуть самолет!» Часы показывали 21 час 40 минут, когда катапультное кресло вышвырнуло летчика из теплой уютной кабины самолета в промозглый мрак сентябрьской ночи. Отошло кресло. С шелестом раскрылся парашютный купол.
Смагин пристально всматривался вниз, пытаясь различить хоть единый огонек. И лишь когда до «земли» остались считанные метры, он понял: под ним – море. Это было Белое море – суровое, безжалостное.
Смагин погрузился в его студеные волны. От обжигающего холода захватило дыхание. Захлебываясь горько‑соленой водой, он выплыл на поверхность, поддул спасательный жилет и, нащупав коченеющими руками замок подвесной системы, нажал фиксатор. Порыв ветра сорвал подвесную систему. Стало легче держаться на воде. Отдышавшись, он подтянул за фал спасательную лодку. Но взобраться в нее в намокшей, ставшей скользкой кожаной куртке оказалось непросто. Пришлось снять с себя надувной жилет, сбросить куртку, оставшись в легком комбинезоне. Лишь после этого удалось влезть в маленькую резиновую лодочку. Сильный порывистый ветер гнал ее по бурному морю к еще невидимому во мраке берегу. Крутые волны то и дело переворачивали лодку, и ему каждый раз приходилось взбираться в нее. Два, пять, десять. Смагин уже потерял счет этим ледяным купаниям. Он уже почти не чувствовал холода. Но решил: не сдаваться, бороться за жизнь, пока есть хоть капля сил, и без перерыва греб и греб онемевшими от холода руками. Неожиданно огромная волна опрокинула лодку и унесла в темноту. Казалось, теперь – конец. Но вдруг ноги зацепили дно. Значит, берег где‑то совсем близко (впоследствии определили, что до него оставалось еще 200 м).
Он продвигался вперед, то стараясь плыть, то отталкиваясь от дна ногами. Перед глазами вспыхивали белые круги, он почти терял сознание, но, собрав в комок всю волю, приказывал себе: вперед!
Неподалеку приветливо светился желтый глаз рыбацкой избушки. Он дополз до порога и упал без памяти.
Супруги Гундаровы сделали все возможное, чтобы спасти героя‑летчика.
Почти семь часов находился Смагин в воде, температура которой была всего шесть градусов выше нуля, а воздуха – плюс пять. Семь часов борьбы со стихиями! Каким беспримерным мужеством должен обладать человек, чтобы выдержать это страшное испытание холодом и ежеминутным ожиданием гибели!
Какие же могучие резервы таит в себе организм, если вызвать их к жизни несгибаемой человеческой волей!
Как себя вести, оказавшись в холодной воде: стараться сохранить неподвижность или согреваться активными плавательными движениями? Основываясь на экспериментальных данных, некоторые ученые рекомендуют активную физическую деятельность, считая, что этим можно в течение определенного времени компенсировать теплопотери за счет увеличения теплопродукции (Beckman, Reevs, 1966). Другие полагают, что поддержание теплового баланса таким способом можно рекомендовать только людям, одетым в специальное защитное снаряжение – скафандры, спасательные гидрокостюмы и тому подобное (White; Roth, 1979). При этом уровень физической активности должен создавать прирост теплопродукции примерно 190 ккал/час за счет мышечного напряжения. В ином случае происходит быстрое охлаждение периферических отделов организма, и в первую очередь конечностей. Теоретически такая физическая нагрузка может предотвратить падение температуры тела за счет увеличения теплопродукции. Однако исследования показали, что при активных плавательных движениях наряду с увеличением теплопродукции нарастают и теплопотери. В результате энергетические резервы организма окажутся израсходованными значительно быстрее (Keating, 1969; Veght, 1961,1972, и др.). Особенно интенсивно этот процесс протекает у людей худощавых, со слаборазвитой подкожно‑жировой клетчаткой.
Одна из причин быстрого понижения температуры тела – перемещение прилежащего к телу, подогретого им слоя воды и замена его новым, холодным. Кроме того, при движениях нарушается дополнительная изоляция, создаваемая водой, пропитавшей одежду. Вот почему активные плавательные движения рекомендуются лишь в тех случаях, когда расстояние до берега или до спасательного средства можно преодолеть минут за 20‑40 без полного истощения тепловых резервов.
Людям, оказавшимся в результате морской или воздушной катастрофы в холодной купели, придется нелегко. И все же выполнение некоторых правил может несколько замедлить наступление гипотермии и этим способствовать увеличению сроков безопасного пребывания в воде с низкими температурами, а следовательно, повысить вероятность спасения. Находясь на плаву, следует голову держать как можно выше над водой, ибо известно, что более 50% всех теплопотерь организма, а по некоторым данным, даже 75% (Jomes, 1978; Petykowski, 1978) приходится на ее долю. Удерживать себя на поверхности воды, стараясь затрачивать на это минимум физических усилий. Активно плыть к берегу, плоту или шлюпке, если они находятся на расстоянии, преодоление которого потребует не более 40 минут. Добравшись до плавсредства, надо немедленно раздеться, выжать намокшую одежду и снова надеть. Для согревания использовать любые пригодные для этой цели вещи. Летчик, например, может воспользоваться тканью парашютного купола, предварительно отжав ее. По возможности дно надувной лодки или плотика застилают парашютной тканью или укладывают что‑либо из снаряжения, чтобы лучше изолировать себя от охлаждающего действия воды. Время от времени рекомендуется разогреваться, выполняя физические упражнения или напрягая попеременно мышцы ног, живота, рук. Для расчета времени безопасного пребывания человека в воде с различной температурой американские физиологи Г. Смит и Е. Хэме составили номограмму (рис. 130), учитывающую массу человека, величину теплообразования, площадь тела, погруженного в воду, теплоизоляцию одежды и, наконец, температуру воды (Smith, Hames, 1962).
В примере, обозначенном на номограмме сплошной линией, человек (Km‑0,3 кло), находящийся в воде с температурой 4°, теряет 610 ккал/кв. м/час (Кк/а). При теплопродукции (М/А) 400 ккал /кв. м/час дефицит тепла (Д/А) составит 210 ккал/кв. м/час. При массе (В) 80 кг и площади тела (А) 1,75 кв. м уменьшение теплосодержания организма (Д) должно составлять 365 ккал/кв. м/час, а температура тела будет снижаться на 6° за один час. Если считать предельно допустимой температурой температуру тела 31°, то время безопасного пребывания будет около часа.
Для прогнозирования физиологических реакций организма и теплового состояния человека в условиях холода французские ученые разработали оригинальную математическую модель. Экспериментальная проверка модели показала, что она хорошо учитывает взаимосвязь между температурой воздуха и воды, влажностью и скоростью движения воздуха, барометрическим давлением и морфологическими особенностями организма – толщиной жировой складки, ростом и весом (Timbal et al., 1976).
Первая помощь людям, извлеченным из воды, направлена в первую очередь на быстрейшее восстановление температуры тела, активное согревание всеми имеющимися средствами.
Пострадавших следует растереть спиртом до покраснения кожи и тщательно укутать в любую имеющуюся под руками сухую одежду. Если есть возможность согреть хоть немного воды, резиновые фляги, заполненные ею, кладут на грудную клетку и живот.
Как указывалось выше, прием алкоголя внутрь нецелесообразен, поскольку он угнетает высшие отделы центральной нервной системы.
Если помощь оказывается медицинским персоналом поисково‑спасательной команды, имеющим в своем распоряжении резиновые ванночки (в качестве ванночек можно использовать надувные спасательные лодки) и запас горячей воды, самым эффективным способом является быстрое отогревание охлажденных в горячей ванне с температурой 36‑40°. Таким методом было спасено 70 из 73 человек, доставленных в клинику в состоянии тяжелого охлаждения (Орлов, 1951). Отогревать пострадавшего начинают в воде с температурой 34‑36°, постепенно повышая ее до 40°. Процедура прекращается после того, как температура тела поднялась до 34° (Schmidt, 1965; Jessen, Hagelstrem, 1972).
Для ускорения согревания тела пострадавшего кожные покровы необходимо растирать мягкими мочалками. Одновременно проводится интенсивная медикаментозная терапия. Внутривенно вводятся: 60‑80 мл 40%‑ного раствора глюкозы для восполнения энергетических ресурсов организма; 10 мл 10%‑ного раствора хлористого кальция и 1‑2 мл 20%‑ного раствора димедрола для предупреждения электролитных расстройств и десенсибилизации организма; 200‑230 мл 5%‑ного раствора бикарбоната натрия, витамины B1, В2 и другие для предупреждения нарушений и корреляции кислотно‑щелочного равновесия (Инструкция по оказанию медицинской помощи…, 1982).
Во время автономного плавания на спасательной лодке или плоту нередко у людей в результате долгого пребывания в вынужденной позе, постоянного охлаждения появляются судороги мышц живота, нижних конечностей. Они болезненны, но безопасны и легко устраняются быстрым растиранием сведенных мышц активными движениями пальцев, стоп.
ПИТАНИЕ В УСЛОВИЯХ АВТОНОМНОГО ПЛАВАНИЯ
Аварийные пищевые рационы, предназначенные для экипажей, совершающих полеты над акваториями, так же как и рационы, используемые моряками, должны не только компенсировать часть энерготрат, но и способствовать экономии жидкости в организме. По мнению гигиенистов и физиологов, в наибольшей степени этому требованию соответствуют рационы, состоящие из одних углеводов – сахара, леденцов, мармелада и т. п.
Например, американский физиолог М. Хокинс считает, что 100 г углеводов в сутки обеспечивают без каких‑либо обменных нарушений экономию белков и воды в течение пяти суток (Hawkins, 1968).
По данным Всемирной организации здравоохранения, рацион из 100 г углеводов и 500 мл воды в сутки обеспечивает жизнедеятельность организма в условиях плавания на спасательной шлюпке в течение пяти суток (The Danger, 1963; Ewing, Millington 1965).
Co времени второй мировой войны аварийные пищевые рационы для морской авиации создавались главным образом из продуктов, содержащих углеводы. На этом принципе был скомплектован аварийный паек для немецких летчиков, состоявший из шоколада, сухарей и таблеток декстрозы (Hanson, 1955), а также голландский, включавший в себя 760 г концентрата кексовой муки в таблетках и 350 г таблетированной глюкозы (DrecolL, 1967). А например, в английский пятисуточный морской рацион входят 500 г карамели, 50 г конфет с 30%‑ной добавкой жира, 500 г сгущенного молока и 500 г галет (Nicholl, I960).
Интересные данные получили Л.Н. Комаревцев и другие (1961), изучавшие влияние малокалорийного углеводного питания на организм человека в условиях четырехсуточного автономного плавания на плотах ПСН‑6.
Заключительное обследование показало, что, несмотря на существенную потерю массы тела (3,7‑4,0 кг), испытуемые, питавшиеся рационом из 150 г карамели и сахара (600 ккал/сутки) с добавкой витаминного комплекса при водопотреблении 0,5 л/сутки, сохраняли удовлетворительное самочувствие. У них отмечался также более нормализованный белковый обмен по сравнению с группой, получавшей концентраты, хлеб и масло (1700 ккал/сутки).
Однако данные, полученные отечественными и зарубежными исследователями, все же не дают четкого ответа на ряд вопросов, имеющих существенное значение для всесторонней сравнительной оценки углеводного и смешанного питания. В связи с этим в 1977 г. нами были проведены специальные эксперименты.[1]
Две группы испытуемых находились в течение 7 суток на надувных плотах при t воздуха 15‑26° и влажности воздуха 46‑95%. I группа питалась смешанным рационом, II – состоящим из одних углеводов (карамели).
Суточная калорийность питания в обеих группах не превышала 400 ккал. За время эксперимента испытуемые I группы выпили 3800 ± 128 мл воды, II – 3419 ± 155 мл.
Результаты исследований показали, что углеводное питание способствовало некоторому снижению почечных водопотерь. У испытуемых первой группы суточное количество мочи составляло в среднем 580 ± 60 мл, во второй мочеотделение снизилось до 385 ± 37 мл/сутки. Кроме того, количество общего азота в суточной моче испытуемых, питавшихся углеводным рационом, оказалось на седьмые сутки эксперимента ниже, чем в первой группе, –5,18 ± 0,28 г и 7,73 ± 0,26 г соответственно.
У всех 32 участников эксперимента наблюдалось некоторое снижение концентрации в плазме крови калия (с 4,7 ± 0,2 ммоль/л до 3,85 ± 0,15 ммоль/л) и натрия (со 147 ± 0,15 ммоль/л до 135 ± 5,9 ммоль/л). Вследствие ограничения водопотребления у испытуемых развилась дегидратация 4,5‑5,0%. На состояние обезвоживания указывали увеличение вязкости крови на 5‑7 единиц, содержания гемоглобина и эритроцитов, повышение гематокрита на 10 ± 3,1 и 6 ± 2,1% соответственно в I и II группах.
За 7 суток эксперимента испытуемые I и II групп потеряли 6,4 ± 0,1% и 7,1 ± 0,3% от первоначальной массы тела. Анализ объективных данных лабораторных и натурных исследований и субъективных ощущений испытуемых позволяет говорить о некотором преимуществе углеводного питания над смешанным в условиях автономного плавания при умеренных и высоких температурах воздуха (Волович и др., 1979) (рис. 131‑135).
В условиях автономного плавания источником дополнительного питания становится все живое, что может дать океан, – рыбы, птицы, млекопитающие, водоросли, планктон. Мясо большинства океанских рыб съедобно даже в сыром виде. Однако при удачном улове его как можно скорее надо завялить, нарезав тушки тонкими ломтями и чуть присолив. В зависимости от района аварии с помощью рыболовных снастей, имеющихся в аварийных комплектах спасательных плотов и лодок, в летных аварийных укладках, можно отлавливать ставриду, морского окуня, сельдь, тунцов и т.д.
Пожалуй, наибольший практический интерес для людей, оказавшихся среди океана на утлом суденышке, представляет золотистая корифена, или дорада (Coryphena hyppurus) (рис. 136). Эту стремительную хищную рыбу природа наградила воистину прекрасным цветным нарядом. Чаще всего встречаются корифены ярко‑желтого цвета с зелеными боковыми плавниками и зеленым спинным плавником, широким, словно раскрытый дамский веер. Он тянется от головы с высоким крутым лбом, придающим хищнице некоторое сходство с бульдогом, до самого хвоста, заостренного словно бранши ножниц. Но иногда попадаются сказочные красавицы цвета старой бронзы с многочисленными синими точечками‑глазками, голубым хвостом и боковыми плавниками, ослепительно синим спинным плавником. Корифена – довольно крупная рыба. Неоднократно нам удавалось поймать экземпляры длиной свыше одного метра, весившие более 20 кг. Во время экспедиции в тропики мы, как правило, встречали корифен, «дежуривших» возле буев, оставленных на несколько дней для проведения гидрологических исследований. Нередко стаи корифен сопровождают небольшие парусные суда, шлюпки и плоты, стараясь поживиться мелкой рыбешкой, укрывающейся в их тени. Корифену лучше всего ловить на крючки № 10, № 11, № 12, на тройники с приманкой из мяса кальмара или рыбы. При отсутствии приманки можно воспользоваться шоколадной оберткой. Привлеченная блеском серебристых кусочков фольги, корифена набрасывается на них, видимо принимая за летучую рыбку.
Тот, кто хоть раз бывал в тропической зоне океана, никогда не забудет сверкающих стаек летучих рыб, то и дело взмывающих над голубой океанской гладью. Пролетев 50‑200 м, словно маленькие серебристые планеры, они бесшумно погружаются в воду, чтобы через несколько секунд снова взмыть над волнами. Нередко в ночное время они залетают прямо в лодку, привлеченные светом фонаря или светлым пятном паруса.
«Начиная с третьего дня после отплытия, – писал А. Бомбар, – и до самого конца плавания я каждое утро находил в лодке от пяти до пятнадцати летучих рыб». «Обычно их бывало не меньше полудюжины, – свидетельствует Т. Хейердал, – а однажды утром мы обнаружили на плоту 26 жирных летучих рыб».
Внимание и наблюдательность могут оказать немалую помощь при рыбной ловле. Надо лишь знать признаки приближения рыбьего косяка: тень от планктона, черная рябь от стайки мелких рыбешек, за которыми следует более внушительная добыча, стремительное пикирование фрегатов и чаек, высмотревших в воде косяк рыбы, высокие прыжки дельфинов, занятых охотой.
Если на крючок с наживкой удалось поймать птицу, не надо тратить время на ее ощипывание. Практичнее будет надрезать шкурку и содрать ее вместе с перьями, тщательно удалив толстый подкожный жировой слой, придающий мясу морских птиц неприятный запах и вкус.
Есть в океане еще один источник пищи, который может сослужить хорошую службу людям, потерпевшим бедствие. Это планктон. Его достоинства отмечали многие путешественники. А Тур Хейердал после своего знаменитого путешествия на «Кон‑Тики» пришел к твердому убеждению, что «приправленный и как следует приготовленный, он (планктон), без сомнения, может служить первоклассным блюдом».
Как и положено исследователям, мы при первом же удобном случае продегустировали густую, буро‑зеленую массу, терпко пахнувшую морем.
Надо сказать честно, что на вид она была весьма неаппетитна. Но преодолев некоторое предубеждение, мы пришли к заключению, что это экзотическое блюдо довольно приятно на вкус и напоминает нечто вроде смеси водорослей с перемолотыми креветками.
Однако как скажется на здоровье человека длительное питание планктоном? Ответить на этот вопрос решил болгарский инженер Дончо Папазов. Он успешно просидел на планктонодиете 14 суток, а 2 года спустя привлек к эксперименту свою невесту Юлию, вдвоем с которой пересек на шлюпке Черное море. А в 1974 г. чета Папазовых отправилась на шлюпке «Джу» через Атлантический океан, и в течение почти двух с половиной месяцев планктон поддерживал силы путешественников (Папазовы, 1978). Ален Бомбар, воздавая должное планктону, приписывал ему и целебные свойства, как источнику витамина С. Однако химический анализ проб планктона, проведенный рядом ученых, показал, что аскорбиновая кислота содержится в нем лишь в небольших количествах (Матузов, 1961).
По нашим данным, содержание аскорбиновой кислоты в планктоне не превышает 5,5‑11,5 мг% (Волович, 1976). Следовательно, чтобы покрыть потребности организма в витамине, необходимо ежедневно съедать не менее 400‑500 г планктона. Практически отлов такого количества вполне возможен.
Так, в дневное время с помощью одной сетки из газа № 23 (23 отверстия на 1 кв. см) с поверхностных слоев воды нам удавалось собрать за три часа до 100‑115 г планктона. Ночью, когда начинается вертикальная миграция веслоногих рачков и прочей живности, образующей зоопланктон, улов возрастал в 3‑4 раза.
Однако зоопланктон не всегда безвреден для организма человека. Некоторые его представители, и особенно микроскопические морские жгутиконосы динофлагелляты, или перидинеи, крайне ядовиты. Отравление наступает через 10‑15 минут, сопровождаясь сильной рвотой, поносом. Появляются сильная слабость, головокружение. Немеют губы, язык, кончики пальцев. Нередко развивается паралич конечностей.
ПРОФИЛАКТИКА И ЛЕЧЕНИЕ ЗАБОЛЕВАНИЙ
Причины гибели экипажа и пассажиров самолетов и кораблей при аварии в океане могут быть самыми различными.
Одни из них действуют сразу же после попадания в воду – утопление, нападение морских хищников. Время действия других исчисляется часами (гипотермия, перегрев). Сопротивляться дегидратации организм может в течение нескольких суток, а бороться с голодом – неделями.
В процессе автономного плавания у экипажа спасательных лодок и плотов могут развиться разлитые заболевания, вызванные неблагоприятным воздействием факторов внешней среды: прямой солнечной радиацией, высокими и низкими температурами окружающей среды. О мерах их предупреждения, защиты и оказания помощи мы уже подробно писали выше. В настоящем разделе мы расскажем о заболеваниях, возникших в результате укачивания, использования в пищу ядовитых рыб, контактов с ядовитыми животными морей и океанов.
УКАЧИВАНИЕ
Укачивание, или морская болезнь, является состоянием организма человека, возникающим в условиях воздействия комплекса раздражителей при качке судна. Морская болезнь развивается обычно у значительной части людей, находящихся на борту спасательной шлюпки или плота.
При проведении трехсуточного натурного эксперимента в тропической зоне Атлантического океана у всех испытуемых мы наблюдали в той или иной форме признаки укачивания, причем у троих были ярко выражены вегетативные явления (профузная рвота, головокружение с полной утратой работоспособности).
В пятисуточных экспериментах на спасательной шлюпке и надувном плоту ПСН‑6 в тропиках Индийского океана из 17 участников 14 страдали различными формами морской болезни, но полная утрата работоспособности отмечалась лишь у одного испытуемого (Волович, 1976).
По данным Р.А. Окунева (1958), у лиц, страдавших морской болезнью, в 95% случаев наблюдались адинамия и апатия, 83% заболевших жаловались на тошноту, 81% – на отсутствие аппетита, 78% – на головную боль, в 47% случаев отмечалась рвота.
По характеру реакций организма различают две основные формы укачивания. Первая из них протекает с ярко выраженными вегетативными проявлениями – тошнотой, рвотой, профузным холодным потом, обильным слюноотделением, к которым присоединяются головные боли, головокружение, нарушение сердечного ритма (Брянов, Горбов, 1954).
При второй, скрытой форме люди жалуются главным образов на вялость, апатию, сонливость, снижение работоспособности (Копанев, 1970; Graybiel, 1976). Во время морских экспедиций мы неоднократно отмечали у ряда участников жалобы на сильную сонливость в период шторма. Способствуют развитию морской болезни, отягощая ее проявление, множество дополнительных факторов. Ими могут оказаться всевозможные запахи пищи, красок, керосина, раздражающие обонятельный анализатор, прием жирной или сладкой пищи, алкоголь, курение, пребывание в замкнутом, плохо вентилируемом помещении и т. д.
Исследования в термокамере и в натурных условиях показали, что устойчивость человека к укачиванию понижается при высоких температурах воздуха (Юганов, Лапаев, 1972).
Для профилактики морской болезни применяется множество медикаментозных препаратов: аэрон, платифилин, димедрол, дифазин, пипольфен, фенерган, изотиазин, банадрил и др. Их принимают в чистом виде или в различных сочетаниях (Окунев, 1958; Wood et al., 1965, и др.).
Весьма эффективным средством для борьбы с морской болезнью оказывается лекарственный комплекс, состоящий из 0,25 г спазмолитика, 0,025 г супрастина, 0,015 г тиамин бромида, 0,005 г фенамина и 0,5 г анальгина. Так, при воздействии прямолинейного ускорения из 25 неустойчивых к укачиванию людей, принимавших препарат, 19 не испытали никаких признаков морской болезни. После приема комбинированного препарата из 0,05 г скополамина, 0,025 г пипольфена, 0,015 г тиаминбромида, 0,005 г фенамина и 0,5 г анальгина у 15 испытуемых не наблюдалось признаков морской болезни, а у 6 время появления вестибуло‑вегетативных рефлексов увеличилось в среднем в 5 раз (Есипов, 1973).
А. Грейбл с сотрудниками получил хорошие результаты, применяя смесь из 25 мг хлористоводородного прометазина и 25 мг сернокислого эфедрина. При этом важное значение имела индивидуальная дозировка препарата (Graybielet al., 1975).
По мнению Н.Я. Лукомской и М.И. Никольской (1971), из всего огромного арсенала средств против укачивания наибольший эффект оказывают производные белладонны – скополамин и гиосциамин.
Для предупреждения морской болезни лекарственные препараты целесообразно принять сразу же после посадки на спасательные лодки, плоты, если волнение моря выше 2‑3 баллов.
В условиях автономного плавания на спасательных шлюпках и плотах при появлении признаков морской болезни рекомендуется принять горизонтальное положение, слегка запрокинув голову. При этом неприятные ощущения обычно уменьшаются. Такая поза устраняет добавочные ускорения, возникающие при активных и пассивных движениях головы, и уменьшает смещение внутренних органов по отношению к диафрагме. Кроме того, при горизонтальном положении тела отолиты будут находиться в условиях наименьшего раздражения (Вожжева, Окунев, 1964).
Способствует уменьшению укачивания оптическая фиксация неподвижной точки горизонта, отдаленных волн, облаков. При подташнивании облегчают состояние глубокие, ритмичные (10‑12 раз в минуту) вдохи в момент подъема лодки на гребень волны, сосание кристаллов лимонной кислоты, кислой карамели, жевание «резинки» и т.п.
Помимо неприятных субъективных ощущений, снижения работоспособности морская болезнь чревата еще одной опасностью. Обильные рвоты, усиление потоотделения увеличивают потери организмом жидкости, а следовательно, ускоряют обезвоживание.
Надо также иметь в виду, что, попадая за борт, рвотные массы могут привлечь к плоту акул. Поэтому, если есть возможность, их надо собирать в пластиковые мешочки точно так, как это делается в самолетах.
ЯДОВИТЫЕ ЖИВОТНЫЕ
Среди океанских просторов, в прибрежной зоне, среди скал, в тихих лагунах коралловых атоллов и болотистых зарослях мангров встречается немало ядовитых рыб, пресмыкающихся, медуз, моллюсков, представляющих в той или иной степени опасность для человека. Встреча с ними часто бывает неожиданной, а последствия весьма серьезными.
Ядовитые медузы. Это произошло на пятый день эксперимента в океане. К 12 часам дня жизнь в шлюпке становилась нестерпимой. Единственным спасением от жгучих лучей солнца была вода. Правда, о купании нечего было и помышлять, так как рядом со шлюпкой кружили акулы, но, зачерпывая пригоршни воды, мы то и дело устраивали себе маленький освежающий душ. Герман Лебедев, перегнувшись через борт, набрал в ладони воду, но вдруг отдернул руку и откинулся на банку. На его предплечье расплылось багровое пятно, в центре которого высыпали мелкие пузырьки, словно от ожога крапивой.
«Кажется, меня какая‑то гадость укусила», – пробормотал он, испуганно потирая руку.
Мы кинулись к борту. На сине‑голубой поверхности воды тихо покачивались фиолетово‑розовые шары, похожие на мыльные пузыри. Это были физалии – медузы сифонофоры[1] (рис. 137).
Между тем Герману становилось все хуже. Краснота и опухоль поползли кверху, перешли на плечо. Боль охватила грудные мышцы. Стало трудно дышать. Пульс участился, стал прерывистым. Он стонал, охал, судорожно глотая воздух. Тут уж мы забеспокоились не на шутку. В ход был пущен весь арсенал средств антигистаминных, болеутоляющих, сердечных. Руку обильно промыли, не жалея пресной воды, обработали спиртом. Боль начала стихать, а через полтора часа совсем исчезла. И лишь яркая краснота еще напоминала о пережитом приключении (Волович, 1969).
Физалия (Physalia aretusa), доставившая нам столько волнений, – удивительное создание, получившее название свое по имени доктора Мари Физаликс, которая открыла ее и описала. Это целая колония полипов, выполняющих различные «обязанности». На плаву ее поддерживает овальный плавательный пузырь – пневматофор до 20‑30 см длиной и 8‑10 см шириной, заполненный газовой смесью, состоящей из 12‑15% кислорода, 1,18% аргона и азота (Брем, 1948).
Пузырь – сложный гидростатический аппарат, изменяющий в зависимости от условий свой удельный вес. Стоит усилиться волнению, как стенки‑гребни немедленно сокращаются, излишек газа выдавливается, и физалия, словно подводная лодка, идет на погружение. Как только наступает затишье, особые железистые клетки заполняют опустевшие емкости газом, и сифонофора вновь всплывает, сверкая на солнце голубыми, фиолетовыми и пурпурными красками. Эта яркая расцветка и послужила причиной, по которой физалию назвали «португальским линейным кораблем»(португальские моряки, как правило, ярко раскрашивали свои каравеллы)…
Интересно, что форма пузыря у физалий, живущих в северном и южном полушариях, различна, и они никогда не встречаются на «чужой территории». Эта особенность помогает сифонофоре противостоять силе вращения Земли, силе Кориолиса, и обеспечивает «северным» сифонофорам движение влево, а «южным» – вправо, являя еще один яркий пример естественного отбора.
Трубчатый нежно‑голубой полип отвечает за пищеварение физалии, другой полип ведает размножением, а длинные, достигающие 30 м щупальца‑арканчики, унизанные пузырьками стрекательных клеток‑нематоцист, обеспечивают колонию питанием и защищают от врага. Каждый пузырек наполнен жидкостью, содержащей ядовитые вещества. Внутри нематоциста свернута спиралью зазубренная стрекательная нить, и стоит прикоснуться к щупальцам, как нить, распрямившись, вонзается в тело жертвы отравленной стрелой.
Яд физалий напоминает по своему нервно‑паралитическому действию яд кобры. Введение даже небольшой дозы яда под кожу лабораторным животным – морским свинкам, собакам, голубям – оказывалось для них смертельным. Он необычайно стоек к высушиванию и замораживанию, и щупальца сифонофоры, пролежавшие в течение шести лет в холодильнике, прекрасно сохранили свои токсические свойства (Эйбль‑Эйбесфельд, 1971). Впрочем, далеко не все морские животные столь чувствительны к яду физалии. Так, рыбка номеус (Nomeus gronovi), без страха шныряющая между грозными щупальцами, переносит без последствий инъекцию порции яда, одной десятой которой хватило бы, чтобы умертвить крупную рыбу. А хищный моллюск гляукус (Glaucus), похожий на синюю ветку причудливого растения, поедает физалию, не страшась ее яда.
Но для человека яд сифонофоры крайне опасен. Описаны случаи гибели людей после обширных ожогов, нанесенных ее стрекательным аппаратом (Пигулевский, 1968).
«Я почувствовал нестерпимую боль, – так описывает нападение физалии один из пострадавших, – как будто рука погрузилась в кипящее масло. Но это был не «жгучий поцелуй», это был страшный сокрушительный залп стрекательных батарей физалии. Через несколько минут кисти рук оказались парализованными. Щемящая боль распространилась на лимфатические узлы под мышками. Кожа на кистях посинела, вздулась и заблестела. Одновременно начали ощущаться сильные рези в желудке, приступы удушья, судороги. В течение часа они повторились дважды. Боль стала утихать через два часа, а затем все явления исчезли» (Просвиров, Иванов, 1962).
В прибрежных водах Филиппин и Британской Колумбии, у берегов Японии и Сахалина встречается другая ядовитая гидроидная медуза – гонионема (Gonionemus ver tens Agassiz). Сквозь прозрачную ткань ее маленького, всего 17‑40 мм в поперечнике, колокола, по краям которого свешивается 60‑80 щупалец, видны четыре коричнево‑красных радиальных канала, образующих крест (Микулич, 1951). За этот своеобразный рисунок жители Приморья и Сахалина и называют ее «крестовичок» (рис. 138).
Гонионема избегает открытого моря, предпочитая густые заросли морской травы зостеры.
Впервые картина отравления была подробно описана в 20 х годах доктором А.Э. Бари (1922). Обычно прикосновение щупалец медузы вызывает резкую боль, напоминающую боль от ожога. Кожа краснеет и покрывается мелкими белыми пузырьками.
Явления общей интоксикации возникают сразу же после стрекания или через 15 20 минут. Появляется ощущение удушья (особенно затруднен выдох), боль в пояснице, в суставах конечностей. Немеют пальцы. Пострадавшие жалуются на одышку, стеснение в груди. Острый период длится 4 5 суток, а затем явления идут на убыль и исчезают без каких либо последствий (Лазуренко и др., 1950; Гончарова и др., 1951).
Но особенно опасна для человека совершенно прозрачная, а потому незаметная в воде небольшая медуза (диаметр ее колокола не более 45 мм) – морская оса (Hironex Fleckeri). Яд ее настолько токсичен, что, ослабленный в 10 000 раз, убивает морскую свинку через десять секунд после инъекции (Внимание! Морская оса, 1968). Человек, ужаленный морской осой, нередко погибает через несколько минут от паралича дыхания (Хасс, 1959).
В конце 60 х годов австралийский ученый Р. Джордж, изучавший опасных морских животных тропических морей, опубликовал любопытные данные о причинах гибели людей в австралийских водах. Оказалось, что морская оса имеет на своем счету гораздо больше жертв, чем самая хищная из акул. Только в 1944 г. у берегов Австралии было зарегистрировано сто смертных случаев, виновником которых была морская оса (Горский, 1960).
Не менее токсичен яд кубомедузы – хиропсалмус (Chiropsalmus quadrigatus Haeckel), встречающейся в водах Южных морей (Halstead, 1965).
Яд медуз весьма сложен по своей природе и разнонаправлен по действию. В его состав входят: тетрамин, вызывающий паралич нервных окончаний; талассин, поражающий кровеносную систему; конгестин, обладающий анафилактическим действием, повышающий чувствительность организма к остальным компонентам яда и влияющий на дыхательный центр, и, наконец, гипнотоксин, воздействующий на центральную нервную систему, вызывающий оцепенение и сонливость (Талызин, 1970; Carten, 1943).
Менее опасными, хотя достаточно болезненными, оказываются ожоги, вызванные актиниями и кораллами, яд которых содержит тетрамин. «Однажды простое прикосновение одной из ветвей коралла к моему лицу причинило мгновенную боль, которая, как и обыкновенно, усилилась по истечении нескольких секунд и, оставаясь на несколько минут очень резкою, чувствовалась еще полчаса спустя» – так описывает ожог кораллом Чарлз Дарвин (1977).
Особенно болезненны ожоги, вызванные жгучим кораллом (Millepora alcicornis Linneus) – ложным кораллом, встречающимся среди коралловых зарослей Красного и Карибского морей, в Тихом и Индийском океанах. Нередко после «ожогов» на коже образуются долго не заживающие язвы (Колдуэлл, 1965).
Морские змеи. В тропических водах Индийского и Тихого океанов, у Панамского перешейка и в Персидском заливе, у берегов Индии и Новой Гвинеи часто встречаются змеи, ведущие морской образ жизни. Это подсемейство змей – морские змеи (Hydrophidae) – насчитывает около 54 видов, из которых многие весьма опасны для человека. На первый взгляд морские змеи напоминают не столько своих земных сородичей, сколько угревидных рыб. Они невелики по размеру, лишь изредка попадаются экземпляры, достигающие 3 м. Тело их с небольшой головой, круглое в передней части и сильно сплющенное с боков в средней, заканчивается коротким плавательным хвостом, напоминающим лопасть весла, поставленную вертикально.
Типичный представитель гидрофин – ластохвост синеполосый (Distira cianocincta). Его нетрудно узнать по оливково зеленой шкурке, покрытой черными поперечными полосами и кольцами (рис. 139).
Широко распространена в прибрежных водах теплых морей пеламида двухцветная (Pelamis platurus) – небольшая темно бурая змея с желтым брюхом и характерным лимонно желтым хвостом, украшенным крупными черными пятнами (рис. 140).
При наблюдении за поведением пеламид в неволе во время плавания на «Витязе» обращала на себя внимание одна из характерных особенностей морских змей. Быстрые и ловкие в воде, вытащенные на палубу, они становились вялыми, неподвижными.
Морские змеи сами редко нападают на людей. Но, извлекая улов из сети, купаясь у берега в местах с густой морской растительностью или во время переходов по таким участкам, можно столкнуться со змеей и получить укус. Яд некоторых морских змей по силе нейропаралитического действия сходен с ядом кобры и даже превосходит его в 8‑10 раз (Крепе, 1963). По некоторым данным, токсичность яда гидрофин еще более значительна (Halstead, 1959; Naval. Med. res., 1967). Однако само отравление развивается довольно медленно, и иногда проходит несколько часов, прежде чем появятся первые симптомы, из которых наиболее характерные – спазма челюстных мышц и опущение век.
Вот как описывает А. Брэм случай гибели человека от укуса морской змеи. «Когда в 1837 г. английское военное судно «Algerine» стояло на якоре на Мадрасском рейде, была поймана морская змея.
Один из матросов до тех пор рассматривал и трогал ее, пока она не укусила его в указательный палец правой руки. Через два часа у него вдруг сделалась рвота, скоро после того пульс стал слабым и по временам прекращался; зрачки были расширены, но сужались под влиянием света; на коже выступил холодный пот, и выражение лица становилось более тревожным и все более обнаруживалось общее и тяжелое болезненное состояние. Скоро наступил паралич гортани, который существенно затруднял дыхание; края раны и ближайшие части руки опухли. Опухоль распространилась потом по всей правой стороне, а шея и лицо приняли пятнистый пурпуровый и серый цвет… Дыхание становилось все труднее, изо рта вытекала темно‑бурая волокнистая масса, затем наступило беспамятство, и еще до истечения четвертого часа после укуса больной умер» (1895).
Известный французский мореплаватель Л. Бугенвиль описал картину отравления матроса с фрегата «Будэз», укушенного морской змеей у берегов Новой Британии. Действие яда сказалось через полчаса. «Матрос внезапно почувствовал страшную боль во всем теле, место укуса на левой стороне тела потемнело и стало распухать на глазах» (1961). Больной выжил, но потребовалось несколько дней, чтобы к нему вернулась работоспособность.
Ядовитые рыбы. Среди рыб, населяющих тропические воды, попадается немало видов, которые природа наделила ядовитым оружием. Ядовитые шипы у рыб расположены в самых различных местах. Например, у звездочета (Uranoscopus scaber) они находятся на жаберных крышках, по одному с каждой стороны; у зигановых (Siganidae) в ядовитые шипы превратились первый и последний лучи брюшных плавников.
Шипы бывают самой различной формы – длинные, тонкие, словно пики, изогнутые, как хирургические иглы, гладкие и зазубренные.
Рыбы‑хирурги из семейства Acanthuridae снабжены всего одной такой колючкой, расположенной у хвостового плавника; рыбы‑жабы, принадлежащие к семейству Batrachoidiae, имеют по два спинных и два украшающих жаберные крышки острых шипа, а вот, например, крылатка (Pterois volitans) имеет целый арсенал, состоящий из 18 ядовитых шипов. Кстати, красная крылатка из семейства морских ершей (Scorpaenidae), известная также под именем рыбы‑зебры, рыбы‑бабочки, является одним из самых ядовитых обитателей тропических вод.
Погрузившись в воды лагуны кораллового атолла, на небольшой глубине можно встретить эту удивительно красивую рыбку, раскрашенную, словно зебра, коричневыми или розоватыми полосками. Она будто парит в воде, чуть шевеля прозрачными лентовидными плавниками. Но эти изящные, нежные плавники‑веера скрывают длинные тонкие ядовитые шипы. Их укол, как удар тока, вызывает острую, пронизывающую боль. Французский кинооператор Марсель Изи‑Шварт, однажды в Тихом океане испытавший на себе укол луча крылатки, писал: «Сунув руку под камень, я вдруг почувствовал сильный укол, похожий на тот, который случается при прикосновении к оголенному электрическому проводу. Боль была такой невыносимой, что пришлось сжимать зубы… С каждым часом мои надежды гасли все больше, взор затягивала пелена. Рука онемела полностью. Только на шестом часу наступило некоторое улучшение – боль стала постепенно утихать и наконец исчезла» (Изи‑Шварт, 1973).
Крайне опасен для человека яд бородавчатников (Synanceidae), особенно одного из представителей этого семейства – бугорчатки ужасной, или камень‑рыбы (Synanceia horrida). Эта небольшая, до 40 см, рыба с уродливой головой и причудливым, лишенным чешуи телом, покрытым множеством бородавок, была впервые описана французским естествоиспытателем Ф. Коммерсоном в конце XVIII в. Ее короткие, крепкие, как железо, шипы скрыты в толще бородавчатой кожи. Это 13 лучей‑колючек спинного плавника, 3 – анального и 2 – брюшного, снабженных валикообразными ядовитыми железами. Бугорчатка – донная рыба и большую часть жизни проводит, зарывшись в песок, прижавшись к расщелине скалы или затаившись среди зарослей кораллов.
Она так похожа на бурый обломок камня, что заметить ее нелегко. Бродя по мелководью лагуны, можно невзначай наступить на нее, и тогда стреляющая боль пронизывает человека с ног до головы. Нередко после укола пострадавший теряет сознание. Кожа вокруг раны становится синюшной, окруженной воспалительным венчиком. К пораженной конечности нельзя прикоснуться. Больной кричит, мечется. Развивается паралич конечностей. Опухоль ползет вверх, захватывает голень, бедро. Нередко эти явления сопровождаются сердечной недостаточностью, бредом, рвотой, судорогами, кожа у места укола некротизируется. Явления нарастают в течение 5‑8 часов, но затем могут пойти на убыль. Смертельные исходы не являются редкостью (Halstead, 1967).
К числу ядовитых, хотя и менее опасных, чем описанные выше крылатки и бородавчатники, относятся Средиземноморский талассофрин (Thalassophrynae reticulata), морские дракончики из семейства Trachinidae и морские ерши (Scorpenidae), встречающиеся в Атлантике, Средиземном и Черном морях.
Вместе с тем описаны тяжелые формы отравления, вызванные ядом морского дракончика (Сальников, 1956). О таком случае нам сообщил А.В. Запорожец. В сентябре 1974 г. во время рыбной ловли ему на крючок попался морской дракончик размером 10‑15 см. Когда он снимал рыбку с крючка, в мякоть первой фаланги указательного пальца правой руки вонзился шип спинного плавника. Сильная стреляющая боль в пальце через несколько секунд стала настолько нестерпимой, что он чуть не потерял сознание. «Предложи кто‑нибудь отрубить палец – согласился бы не задумываясь». Палец набух, посинел. Через 2‑3 минуты опухоль стала быстро увеличиваться в размерах, распространившись на предплечье. На лбу выступил холодный пот. Пульс участился до 140 ударов в минуту. Температура тела подскочила до 39°.
Вся правая рука покраснела, сильно отекла. Новокаиновая блокада в области запястья и введение промедола не уменьшили страшных, стреляющих болей. У пострадавшего отмечались сумеречное состояние, одышка, перебои в сердце. Боль стала стихать лишь через 6‑7 часов. Общее состояние улучшилось только на четвертые сутки, однако опухоль не спадала в течение последующих 20 дней.
Через 3 недели неожиданно поднялась температура до 40°, сопровождавшаяся ознобом, учащением пульса. Опухоль вновь увеличилась в размерах. Появились признаки лимфоденита подмышечных желез и лимфангоита. На месте укола образовался синюшный пузырь с мутным содержимым размером в трехкопеечную монету.
Все эти явления держались в течение трех суток, а затем стали стихать после наложения повязки с синтомициновой эмульсией и введения антибиотиков. Отек плеча и предплечья держался около 1,5‑2 месяцев. Участок тканей вокруг ранки почернел и некротизировался. В дальнейшем развилась контрактура первой и второй фаланги указательного пальца.
Особое место занимают скаты‑хвостоколы Trigon pastinaca, T. limma, T. grabatus и др., ядовитый аппарат которых состоит из длинного, 10‑50‑сантиметрового, зазубренного шипа и желез, вырабатывающих яд нейротропного действия. Укол хвостокола напоминает удар тупым ножом. Боль, быстро усиливаясь, через 5‑10 минут становится совершенно нестерпимой. Местные явления (опухоль, покраснение) сопровождаются обмороком, головокружением, нарушением сердечной деятельности. В легких случаях выздоровление наступает быстро, тяжелые – могут привести к смерти от паралича сердца (Чеботарева‑Сергеева, 1971).
В тропиках встречаются различные рыбы, в мясе и внутренних органах которых содержатся токсические вещества, опасные для здоровья человека. К таким рыбам относятся представители семейства двузубых (Diodontidae), в частности причудливая еж рыба (Diodon hystrix), которая в минуту опасности набирает воздух и всплывает на поверхность, превращаясь в шар, покрытый колючими иглами; семейства молид (Molidae), например луна рыба (Molamola), чья печень, икра и молоки весьма ядовиты; представители широко распространенного в Тихом, Индийском и Атлантическом океанах семейства спинороговых (Balistidae) (рис. 142. 1, 8).
Но особенно тяжелые отравления вызывают печень, икра, молоки рыбы, называемой японцами фугу (Tetrodon Vermicularis). Ее округлое тело, лишенное чешуи, окрашено в серо коричневые тона, брюшко – белое. На спине и боках видны червеобразные и круглые темно коричневые пятна. Челюсти фугу с четырьмя долотовидными зубами образуют своеобразный клюв, разделенный посередине швом.
Тетродотоксин – действующее начало яда фугу – был открыт японским ученым Тахара. Тетродотоксин поражает отростки нервной клетки – аксоны, блокируя передачу нервных импульсов. Он в 10 раз ядовитее знаменитого кураре, а по своей активности в 160 тыс. раз превосходит кокаин (Кнунянц, Костяновский, 1965).
Первому описанию симптомов отравления тетродотоксином мы обязаны английскому мореплавателю Джеймсу Куку, на себе испытавшему его действие.
В 1776 г. Д. Кук высадился на берег острова, названного им Новой Каледонией. «Один из моих спутников приобрел рыбу неизвестного вида. Она имела огромную длину и уродливую голову. К назначенному часу зажарили лишь одну печень. В три часа ночи мы оба почувствовали себя очень плохо. Симптомами отравления была почти полная потеря чувствительности и онемение конечностей. Я потерял способность ощущать вес вещей. Горшок емкостью в кварту, наполненный до края водой, и перо казались мне одинаковыми по весу. Своевременно принятое рвотное помогло нам. Утром околела одна из свиней, которая съела внутренности рыбы» (Кук, 1948).
Для отравления ядом фугу характерны такие симптомы, появляющиеся через 10 15 минут после еды, как зуд губ и языка, расстройство координации движений, обильное слюноотделение, мышечная слабость. 60% людей, отравившихся фугу, погибает в течение первых суток (Осипов, 1976). Только за один 1947 г. в Японии было зарегистрировано 470 случаев смертельных отравлений ядом фугу, а с 1956 по 1958 г. – 715 случаев (Linaweaver, 1967).
Ядовитые моллюски. При обычных условиях практически все моллюски, населяющие моря и океаны, съедобны. Однако в отдельных случаях некоторые из них становятся опасными для человека. Это странное превращение – результат бактериального заражения моллюсков или следствие того, что, питаясь ядовитыми динофлагеллятами, они сами приобретают токсические свойства.
К таким моллюскам относятся сердцевидка (Cardium edule), донакс (Donax serra), спизула (Spisula solidissima), синяя ракушка (Schizothaerus nuttalli), мия (Mya arenaria), калифорнийская мидия (Mytilus californianus), съедобная мидия (Муtilus edulis), волселла (Volsella modiolus) и др.
Отравление моллюсками может протекать по желудочно кишечному типу – с тошнотой, рвотой, поносом, желудочными спазмами, возникающими через 10 12 часов после приема пищи; по аллергическому типу – с покраснением и отеком кожи, мелкой кожной сыпью, зудом, головной болью, опуханием языка. Наиболее тяжелой формой является паралитическая. Для нее характерны появления жжения и зуда губ, языка, десен. К ним присоединяются головокружение, боли в суставах, нарушение глотания, слюнотечения. Нередко развиваются параличи мышц. В тяжелых случаях отравления заканчиваются гибелью пострадавшего.
При сборе съедобных моллюсков и ракообразных на мелководье тропических побережий невольно привлекают внимание большие, ярко окрашенные раковины, в которых скрываются их грозные обитатели – ядовитые моллюски конус. Это представители многочисленного (более 1500 видов) семейства Conidae. Размеры раковин варьируют от 6 до 230 мм, окраска их разнообразна и причудлива, но все они имеют характерную конусовидную форму (Hinton, 1972). К наиболее опасным относятся географический конус (C. geographus), чьи крупные раковины красивой кремово белой окраски украшены коричневыми пятнами и полосами; C. magus с небольшими беловатыми пятнистыми раковинами; C. stercusmuscarum, чья беловатая раковина усыпана черными точками; C. catus, имеющий черную с белыми пятнами раковину; коричнево голубой C. monachus.
К числу крайне ядовитых относится также C. tulipa. Его небольшая, закрученная на конус раковина, голубая, розовая или красно коричневая, покрыта белыми и коричневыми точками и спиралями. Мраморный конус (C. marmoreus) можно узнать по крупной белой раковине с многочисленными треугольными черными пятнами, придающими ей мраморность. Блестящие, словно полированные, раковины C. textil отличаются пестрым орнаментом из коричневых и белых точек и спиралей.
Конусы очень активны, когда к ним прикасаются в их среде обитания. Их токсический аппарат состоит из ядовитой железы, связанной протоком с твердым хоботком радулой теркой, расположенной у широкого конца раковины, с острыми шипами, заменяющими моллюску зубы. Если взять раковину в руки, моллюск мгновенно выдвигает радулу и вонзает в тело шипы. Укол сопровождается острейшей, доводящей до потери сознания болью, онемением пальцев, сильным сердцебиением, одышкой, иногда параличом. На островах Тихого океана зарегистрированы случаи смерти собирателей раковин от укола конусов (Зал, 1970).
К ядовитым моллюскам также относят теребру (Terebra maculata). Его раковина, похожая на длинный узкий конус, имеет своеобразный рисунок в виде многочисленных белых пятен, разбросанных по коричневому или черному фону.
В 1962 г. Пастеровский институт провел в Новой Каледонии исследования моллюсков, которые были причиной гибели нескольких лиц, и издал специальный документ, заканчивающийся словами: «Собирая раковины, помните – вы шагаете по минному полю».
Определенную опасность для человека представляют морские ежи (Echinoidea), покрытые сплошным панцирем из множества игл. Они очень тонкие, ядовитые, и каждая жалит на свой манер.
Иглы настолько остры и хрупки, что, проникнув глубоко в кожу, тут же обламываются и извлечь их из ранки крайне трудно. Помимо игл ежи вооружены маленькими хватательными органами – педицилляриями, разбросанными у основания игл.
Яд морских ежей не опасен, но вызывает жгучую боль в месте укола. А вскоре появляется краснота, припухлость, иногда наблюдается потеря чувствительности и вторичная инфекция.
Профилактика и лечение. Лучший метод профилактики от ожогов медуз и уколов ядовитых рыб и моллюсков – осторожность. Осторожность при разборе улова в сетке, при снятии рыб с крючка, осторожность и внимательность при сборе моллюсков в поисках пищи среди кораллов, на участках, заросших водорослями. Брать раковину моллюска можно только за узкий конец, т. е. там, где нет радулы, и ни в коем случае не класть на руку.
Если же человек подвергся нападению ядовитого животного, помощь должна быть оказана без промедления.
При ужаливании медузами пораженное место тщательно обмывают водой с мылом, обрабатывают раствором марганцовокислого калия (1:5000), смазывают растительным маслом или синтомициновой эмульсией.
При поражениях, вызванных физалией, рекомендуются средства для предупреждения шока (1‑2 мл 0,1%‑ного морфина или 1‑2 таблетки промедола), сердечные и дыхательные средства, антигистаминные препараты (димедрол), а при остановке дыхания – искусственное дыхание (Miles, 1966, и др.).
Интоксикацию, возникающую от «ожога» гонионемой, лечат введением подкожно 1,0 мг 0,1%‑ного раствора адреналина или 1,0 мл 5%‑ного эфедрина (Брехман, Минут‑Сорохтина, 1951; Наумов, 1960). В качестве обезвреживающего и мочегонного внутривенно вливают 30‑40 мл 40%‑ного раствора глюкозы.
А.Э. Бари (1922), А.В. Иванов, А.А. Стрелков (1949) рекомендуют небольшие дозы алкоголя, однако, по мнению других авторов, алкоголь противопоказан, так же как морфий и атропин (Лазуренко и др., 1950; Сорохтин, 1951).
При укусах ядовитых морских змей, уколах шипами ядовитых рыб или моллюсков лечебные мероприятия ведутся в трех направлениях: нейтрализации и удаления яда, облегчения боли и борьбы с шоком, предотвращения вторичной инфекции. Необходимо, не теряя времени, немедленно отсосать яд. Если от момента укуса прошло не более 3‑5 минут, определенную пользу могут оказать наложение жгута на конечность выше места укуса и крестообразные разрезы ранки (Пигулевский, 1964; Halstead, 1954). Для облегчения боли пораженную конечность следует на 30‑60 минут поместить в ванночку с горячей водой. Рекомендуются инъекции новокаина в область раны (3‑5 мл 0,5‑2%‑ного раствора) , примочки со спиртом, нашатырным спиртом или концентрированным раствором марганцовокислого калия. Некоторые авторы считают полезным прием внутрь раствора марганцовокислого калия (1:5000) по столовой ложке 7‑8 раз в день (Сальников, 1956).
Для борьбы с болевым шоком применяют введение под кожу 1,0 мл 0,1%‑ного раствора морфина или 2,0 мл 2%‑ного раствора пантопона[1], сердечные препараты, дыхательные аналептики, обильное горячее питье и небольшие дозы алкоголя.
При уколах шипами крылатки эффективным средством оказывается нашатырный спирт, 3‑5 мл которого принимают внутрь в слабом растворе (Кларк, 1968). Для предупреждения вторичной инфекции рану тщательно очищают от обломков игл, шипов, а затем обрабатывают дезинфицирующим раствором (спиртом, марганцовкой и т.п.) и накладывают стерильную повязку. Пораженную конечность фиксируют шиной из любого подручного материала и обеспечивают пострадавшему полный покой.
Наступив на морского ежа, следует, выбравшись на берег, немедленно извлечь из раны обломки игл и педициллярий, смазать ранку спиртом и, если возможно, сделать горячую ванну (Райт, 1961).
Ядовитую рыбу не всегда удается распознать по внешнему виду, особенно людям, впервые оказавшимся в тропических водах, однако некоторые внешние признаки могут вовремя насторожить человека и предотвратить отравление. Специалисты не рекомендуют употреблять в пищу рыб ярких расцветок (это в первую очередь рифовые рыбы), лишенных боковых плавников, чешуи, имеющих округлую форму, черепахообразную голову, клювовидные челюсти, а также рыб малоподвижных, с кожными язвами и наростами, с кровоизлияниями и опухолями внутренних органов (Halstead, 1958). Но даже в тех случаях, когда вид рыб хорошо известен, необходимо помнить, что икра, молоки, печень всегда потенциально опасны для человека.
При отсутствии другой пищи и невозможности точно определить, насколько безопасно есть пойманную рыбу, мясо ее рекомендуют нарезать тонкими ломтиками, вымачивать в воде 30‑40 минут, а затем, сменив воду, варить до готовности.
Собранных моллюсков следует хорошо промыть перед варкой, а после приготовления бульон слить, ибо он может содержать токсические вещества. Поскольку они сконцентрированы главным образом в органах пищеварения, в сифоне, черном мясе и жабрах, есть можно только мышцы или белое мясо.
Лечение пищевых отравлений направлено в первую очередь на удаление яда из организма. Поэтому при первых признаках отравления: тошноте, головокружении, зуде вокруг губ – необходимо немедленно очистить желудок обильным питьем соленой воды с последующим вызыванием рвоты.
Затем пострадавшего надо согреть, так как периферическое кровообращение ослаблено, дать горячий крепкий чай, кофе. При нарушении сердечной деятельности подкожно вводятся кофеин, кордиамин, камфора и т.д., при остановке дыхания производится искусственное дыхание.
ХИЩНЫЕ МОРСКИЕ ЖИВОТНЫЕ
С той поры как человек впервые дерзнул выйти в открытый океан, своим злейшим врагом он считает акулу. Правда, из всего многочисленного акульего племени, насчитывающего около 350 различных видов,[2] опасны для человека лишь немногие. По мнению некоторых специалистов, на людей нападают представительницы лишь 27‑29 видов (Шегрен, 1962; Halstead, 1959; Garrik, Schultz, 1963; Gilbert et al., 1967). П. Несбит и другие (1965) считают, что особую опасность представляют лишь 8‑9 видов акул. И первой в этом мрачном списке акул‑каннибалов стоит большая белая акула (Carcharodon carcharias). Нет равных по силе и кровожадности этой «царице царей океана», прозванной белой смертью. Немало жертв на своей совести насчитывают тигровая (Galiocerdo cuvieri) и акула‑молот (Sphyrna zygaena) – уродливое чудовище с плоской головой, разделенной на две доли, с крохотными злобными глазками, сверкающими на их концах. Не менее опасны для человека стремительная красавица мако (Isurus oxyrinchus), неукротимая в атаке, упорная в защите; медлительная, но хищная бычья (Carcharinus leucas); серо‑коричневая песчаная (Carcharias taurus Rafinesque) с длинными и тонкими, как кинжалы, зубами, загнутыми внутрь; голубая (Prionace glauca) с узкими плавниками, шиферно‑голубой спиной и ослепительно белым брюхом и длиннокрылая (Carcharhinus longimanus) с огромными грудными плавниками и закругленным спинным, словно вымазанным по краям грязно‑белой краской, которую Ж.‑И. Кусто считает одной из самых грозных глубоководных акул; коварная лимонная (Negaprion brevirortris) и даже морская лисица (Alopias vulpinus Bonnaterre). Впрочем, весьма сомнительно, чтобы у пловца, увидевшего акулу, возникло особое желание выяснить, к какому семейству она принадлежит, кровожадна она или вполне безобидна (рис. 144).
Специалисты считают, что любая акула длиной более метра представляет опасность для человека. Так, в 1406 случаях, проанализированных Л. Шульцем, нападения совершали акулы величиной 1,2‑4,6 м (Schultz, 1967).
Как часто акулы нападают на человека? Существуют «оптимисты», считающие, что опасность нападения акул на человека преувеличена. Порой в качестве доводов приводят статистику автомобильных катастроф, в которых, дескать, гибнет значительно больше людей, чем от акульих зубов. Но хотя автомобилей на нашей планете значительно меньше, чем акул, люди с ними встречаются гораздо чаще (рис. 145).
В картотеке лаборатории ВМФ США в Сиеста‑Ки (штат Флорида) насчитывалось более 1700 досье с подробным описанием акульих атак (Уильямс, 1974). Поданным официальной статистики, ежегодно от нападения акул гибнет от сорока до трехсот человек (Кенией, 1968). А по неофициальной?
Кто знает, сколько из тех несчастных, кто бесследно исчез после кораблекрушений, нашли свою смерть в зубах акулы! Однако совершенно точно известно, что во время войны и морских катастроф число акульих жертв резко возрастает.
И где только не нападают акулы на людей: среди бескрайних океанских просторов и у самого берега на мелководье, в синеватой глубине у подножия рифов и на залитом солнцем песчаном дне. Они атакуют свои жертвы в шторм и тихую, безветренную погоду, днем и ночью. Как правило, акулы предпочитают только теплую, не ниже 21°, воду (Coplesson, 1963; Davies, 1963). Инциденты с акулами в более холодных водах – исключение. Из 790 случаев нападений только три произошли в воде с температурой 18° (Шульц, 1962).
Почему акулы вдруг становятся агрессивными? Биологи предполагают, что наиболее вероятной причиной является голод. Если обычная пища – рыбы, кальмары, тюлени и другие обитатели вод, с которыми хищники справлялись без особых усилий, – почему‑либо исчезала, акула в голодном ослеплении нападала на любой объект, даже превосходящий ее размерами и силой. И тем не менее издавна сложившееся мнение о неимоверном аппетите акул оказалось ошибочным. Американский биолог Юджени Кларк выяснила, что акула ест относительно немного. Так, количество пищи, съеденной акулой за неделю, не превышало 3‑14% ее собственного веса (Clark, 1963).
По данным В. Коплессона (Coplesson, 1963), 3,5‑метровая акула, за которой в течение года вели наблюдения в океанариуме, съела за этот период всего 96 кг рыбы, что составляло чуть больше половины ее веса.
И в то же время неразборчивость акулы во вкусах просто удивительна. Чего только не находили в желудках акул – консервные банки и почтовые посылки, подковы и дамские шляпы, ручные гранаты, поплавки от сетей и даже примус. Однажды у берегов Сенегала в брюхе тигровой акулы обнаружили туземный барабан тамтам. Размеры его были весьма внушительны: длина – 27 см, ширина – 25 см, вес добрых 7 кг (Budker, 1948).
Пустой желудок заставлял акул нападать на людей. Это объяснение ни у кого не вызывало сомнений. Итак, голод – очевидная причина. Но единственная ли? Многие случаи столкновения человека с хищницами никак не укладываются в привычную схему. Повреждения, полученные людьми, не были похожи на укусы, а напоминали глубокие порезы, словно по телу прошлась гребенка из отточенных лезвий; пловцы, обеспокоенные неожиданным покалыванием или царапанием, выйдя из воды, с испугом обнаруживали на коже обширные ссадины, происхождение которых не вызывало сомнений.
В общем многое в поведении акул остается необъяснимым: то они равнодушно скользят мимо истекающего кровью беспомощного пловца, не проявляя к нему никакого интереса, то устремляются в атаку на вооруженного аквалангиста, то они спокойно проплывают рядом с куском окровавленного мяса, то остервенело накидываются на тряпку, пропитанную мазутом.
Порой акула впадает в какое‑то необъяснимое бешенство – «пищевое безумие», как это назвал профессор П. Джильберт. В слепой ярости набрасывается она на любой предмет, лежащий на ее пути, будь то лодка, ящик, плавающее бревно, пустой бидон или клочок бумаги. Эта всесокрушающая злоба чем‑то напоминает состояние, называемое малайцами амок. «… Припадок бессмысленной, кровожадной мономании, которую нельзя сравнить ни с каким другим видом алкогольного отравления» – так описал его Стефан Цвейг. Но вот прошел этот странный припадок, и акула как ни в чем не бывало спокойно возвращается к своим товаркам.
Обычно же акула весьма осмотрительна и, встретив незнакомый предмет, будет подолгу кружить неподалеку, выясняя, не опасен ли он. Но чем больше она проникается уверенностью в своей силе и превосходстве, тем быстрее суживаются круги ее движения.
Акула готовится к атаке. Ее грудные плавники опускаются вниз под углом 60°, нос чуть приподнимается, горбится спина. Ее напряженное тело и голова двигаются взад и вперед одновременно с движением хвоста (Church, 1961; Davies, 1964). Лишь однажды смельчаку оператору удалось заснять этот момент на пленку, и это едва не стоило ему жизни. Затем следует могучий рывок вперед – и акула хватает свою жертву. Но иногда акула с налету наносит своей жертве удар рылом. Может быть, этим она лишний раз проверяет, съедобен ли предмет, может быть, хочет оглушить добычу?
Природа наделила акул идеальным инструментом для убийства. Их челюсти, усаженные частоколом зазубренных по краям треугольных зубов, обладают огромной силой. Четырехметровая акула может начисто отхватить ногу, а шестиметровая – без труда перекусывает человека пополам. В зависимости от породы в пасти акулы насчитывается от двадцати до нескольких сот зубов. Они расположены в пять‑шесть, а иногда в добрых полтора десятка рядов и заменяются словно патроны в барабане револьвера. Стоит передним выпасть, как задние занимают их место. Недаром акулью челюсть называют «револьверной».
Биологам Лернеровской морской лаборатории в океанариуме на Бимини (Багамские о‑ва) удалось измерить мощь акульих челюстей. Десять суток тигровую акулу ничем не кормили, и, когда хищница буквально обезумела от голода, ей вместо мяса бросили специальный динамометр. Это был алюминиевый цилиндр, в котором между внешней оболочкой и стальными обоймами поместили шарики из нержавеющей стали. Приманкой служило специальное пластмассовое покрытие. Акула набросилась на добычу. Челюсти ее стиснули динамометр с силой, превышающей две тысячи атмосфер. По данным П. Джильберта, сила сжатия челюстей достигает 18 метрических тонн (Gilbert, 1962).
Нападая, акула сначала вонзает в тело жертвы зубы нижней челюсти, словно насаживая ее на вилку. Зубы верхней выдающейся вперед челюсти благодаря движениям головы и вращательным движениям тела, как нож, кромсают ткани, нанося ужасные раны. Вот почему так высок процент смертельных исходов акульих атак (Gilbert, 1966). По сообщению доктора Л. Шульца, из 790 случаев нападения 408 привели к гибели людей (51%) (Шульц, 1962).
Но порой небольшие, казалось бы, совсем безопасные для жизни укусы неожиданно приводили к печальному концу. У раненого, если медицинская помощь запаздывала, вскоре повышалась температура, начинался озноб. Состояние его быстро ухудшалось, и он погибал на этот раз от заражения крови. Оказалось, что акулью пасть населяют вирулентные гемолитические бактерии. В пробах, взятых с зубов и слизистой оболочки, выстилающей челюсти, Д. Дэвис и Г. Кемпбелл обнаружили целые полчища этих невидимых простым глазом убийц (Davies, Campbell, 1962).
Что помогает акуле в ее непрестанных поисках пищи? Обоняние, зрение, а может быть, слух? Какое значение имеет каждое из этих чувств на различных этапах атаки? Многие специалисты считают, что ведущую роль, определяющую поведение хищницы, играет обоняние (Baldrige, Reber, 1966, и др.). Ее огромные обонятельные доли в мозге обеспечивают поразительную способность распознавать запахи на большом расстоянии. Акула может определить присутствие посторонних веществ в воде в концентрации один на несколько миллионов. Ее плоская книзу морда с широко открытыми ноздрями, выдвинутыми далеко вперед, воспринимает бесчисленные запахи океана, помогая найти дорогу к пище, даже если она находится «за тридевять земель».
На основании экспериментов Джон Паркер из Гарвардского университета предположил, что для точной локации цели акулам требуются обе ноздри. Если это так, то наблюдавшееся не раз виляние акулы из стороны в сторону при подходе к добыче вполне объяснимо: чуя запах с одной стороны, акула уклоняется в эту сторону до тех пор, пока и другая ноздря не начинает его хорошо улавливать.
Зрению тоже принадлежит немаловажная роль в поведении акулы. Правда, акулы довольно близоруки, совершенно не разбираются в красках и на большой дистанции мало полагаются на свои глаза. Однако, чем меньше расстояние до цели, тем быстрее нарастает значение этого органа чувств. Конечно, сила и направление течений, прозрачность воды и освещенность окажут свое влияние, но в момент непосредственной атаки, т. е. за 3‑5 м, зрение становится главным чувством, руководящим действиями акулы (Gilbert, 1962). Такое своеобразное изменение его роли объясняется анатомическими особенностями органа зрения акулы.
Как известно, глаз животных имеет световоспринимающие клетки двух типов: колбочки и палочки. Первые – обеспечивают дневное зрение во всех его проявлениях, от них зависят острота зрения и способность глаза различать цвета. Вторые – отвечают за ночное зрение. Так как вся жизнь акул проходит преимущественно в среде с пониженной освещенностью, то в процессе многовековой адаптации к этим условиям глаза приобрели определенные особенности. Профессор П. Джильберт, исследовав орган зрения акул 16 видов из отрядов Galeoidea и Suqalloidea, установил, что у большинства из них в сетчатке глаза колбочки имеются либо в мизерном количестве, либо вовсе отсутствуют (Gilbert, 1963). После этого не приходится удивляться, что акулы не блещут остротой зрения и совсем не разбираются в красках. Зато палочек в сетчатке изобилие, и это обеспечивает глазу очень высокую чувствительность. Эта чувствительность усиливается с помощью особого зеркалоподобного слоя из кристаллов гуанина, выстилающего сетчатую оболочку глаза. Свет, входящий в глаз, отражаясь от него, словно от зеркала, обратно в сетчатку, повторно раздражает зрительные клетки (Mc Fadden, 1971). Поэтому даже при самом тусклом освещении акула великолепно различает не только объект, но и малейшее его движение, особенно если фон контрастный. Акула легко приспосабливается к резким изменениям света, и чувствительность глаза к свету после 7‑часового пребывания в темноте, по данным С. Грабера, возрастает почти в миллион раз (Gruber, 1967). Хотя акула не разбирается в цветах предметов, но тем не менее она отлично реагирует на яркость и контрастность их окраски. На эту особенность акульего зрения еще полсотни лет назад обратил внимание знаменитый охотник на акул Р. Янг. Отлавливая хищниц у берегов Австралии, он заметил, что сети белого цвета всегда были полны добычи, в то время как голубые и зеленые, как правило, оставались пустыми.
Не случайно негры‑ныряльщики на Антильских островах перед спуском под воду тщательно чернят ступни и ладони, которые у них значительно светлее, чем остальная кожа (Уэбстер, 1966). Водолазы с западного берега Флориды всем расцветкам гидрокостюмов предпочитают черные.
Конрад Лимбо, большой знаток акул, отмечал, что тигровые и белые акулы значительно чаще нападали на людей, обутых в зеленые ласты, и проявляли полное равнодушие к черным и темно‑коричневым (Limbaugh, 1963). Эта черта характера акул хорошо известна австралийским купальщикам. Поэтому, прежде чем войти в воду, они оставляют на берегу все, что может привлечь внимание хищниц, – кольца, браслеты, бусы и серьги.
Однако японки – собирательницы жемчуга – амы – облачаются в курточку, юбку и шапочку ярко‑белого цвета в твердой уверенности, что именно белое отпугивает акул и морских змей.
Где же истина? Этот вопрос весьма волновал конструкторов морского спасательного снаряжения. Ведь спасательные лодки, плоты и жилеты изготавливаются из материалов самой броской окраски – красной, желтой, оранжевой. На голубом фоне океанских просторов они заметнее на большом расстоянии. Но коль скоро яркие предметы привлекают хищниц, значит, никто не может гарантировать, что акулы оставят в покое спасательную лодку, а прорвать зубами тонкую прорезиненную ткань для них сущий пустяк!
Специальные эксперименты, проведенные у флоридского побережья, показали, что во избежание нападения акул подводную часть лодок и плотов целесообразно окрашивать в черный цвет (Gilbert et al., 1970; McFadden, 1971).
Но не только зрением и обонянием пользуется акула в своих непрестанных поисках пищи. Природа наделила хищницу органом, позволяющим улавливать на большом расстоянии малейшие колебания воды, вызванные бьющейся рыбой, падением тяжелых предметов, взрывами и т. п. Не случайно во время морских катастроф акулы появляются невесть откуда у места происшествия, чтобы устроить свой кровавый пир. Этот чувствительный орган – своеобразная комбинация сонара и радара – латеральная линия. Он состоит из тончайших каналов, лежащих почти под кожей по обеим сторонам тела акулы. Вдоль них тянутся пучки нервных узлов – ганглиев, из которых в полость каналов, заполненную жидкостью, входят структуры, напоминающие волоски (Grasse, 1957).
А есть ли у акул слух? Многие ученые долгое время были убеждены, что акулы лишены способности воспринимать подводные звуки, считая, что латеральная линия заменяет и вполне компенсирует упущение природы. Ошибочность этого мнения доказал биолог Д. Нельсон. Записав на магнитофонную ленту звуки бьющейся рыбы частотой в 100 гц, он подсоединил к магнитофону репродуктор в герметической оболочке и опустил его под воду у атолла Рангориа, где акулы давно уже не появлялись. Вскоре у подножия рифа мелькнула расплывчатая тень, и прямо к репродуктору подплыла крупная тигровая акула. Она приблизилась к незнакомому предмету, издававшему звуки раненой рыбы, и стала кружить, словно прислушиваясь.
Эксперимент был многократно повторен, и каждый раз на «рыбьи крики» приплывали все новые акулы. Правда, через некоторое время акулы «раскусили» обман и потеряли к репродуктору всякий интерес (Nelson, 1969).
Австралийский профессор Тео Браун сообщил, что, по его наблюдениям, акулы хорошо разбираются не только в подводных звуках, но и в музыке, которая «действует на них умиротворяюще». У акул имеется еще один орган чувств, назначение которого долгое время оставалось неясным для ученых. В 1663 г. знаменитый итальянский анатом Мальпиги обнаружил на передней части головы акулы, особенно в области рыла, множество крохотных отверстий, напоминающих поры. Они вели в тонкие, с расширением на конце трубки – ампулы, выстланные изнутри клетками двух видов – слизистыми и чувствительными. Эти странные образования были детально исследованы и описаны в 1678 г. Стефано Лорензини и были названы его именем. Одни исследователи предполагали, что с их помощью акула определяет изменения солености воды (Barets, Szabo, 1962), другие утверждали, что ампулы Лорензини – своеобразный глубиномер, реагирующий на колебания гидростатического давления (Dotterweich, 1932, и др.), третьи считали, что функция ампул ограничена восприятием температуры (Sand, 1938). В 1962 г. Р.В. Мюррей высказал мысль, что ампулы – это необычайно чувствительный орган электрорецепции, улавливающий изменения электрического поля величиной в одну миллионную вольта на сантиметр (Murray, 1962). С.Дийкграф решил проверить правильность идеи Мюррея с помощью простого, но оригинального опыта (Dijkgraaf, 1964). Если в воду опустить металлическую пластину, рассуждал он, то напряженность электрического поля изменится. Коль скоро акулы могут улавливать эти изменения, значит, это скажется на их поведении. Так он и поступил. В аквариум с акулами ввели длинную металлическую пластину, и акулы явно «занервничали». К появлению стеклянной пластины они остались безразличны. Снова опустили металлическую пластину, и опять акулы стали проявлять беспокойство. Да, Мюррей был прав!
Дальнейшие всесторонние исследования привели ученых к заключению, что ампулы Лорензини – орган чувств, реагирующий на самые различные раздражители: температуру, соленость, гидростатическое давление и, наконец, изменение электрического поля. Весьма вероятно, что с помощью ампул акула на последнем этапе атаки, т.е. за несколько сантиметров от цели, по электрическим импульсам, испускаемым биологическим источником, определяет характер добычи.
С каждым годом все ширились знания об акулах, и все же во многом характер их оставался загадкой. «Никогда не известно, что акула намерена предпринять» – гласит золотое правило подводных пловцов, и с ним согласно большинство специалистов (Budker, 1971).
«В результате моих встреч с акулами, – свидетельствует Жак Кусто, – а их было более ста, и встречался я с самыми разными видами, я вывел два заключения: первое – чем ближе мы знакомимся с акулами, тем меньше о них знаем, и второе – никогда нельзя предугадать, что сделает акула» (Кусто, Дюма, 1974; Кусто Ж., Кусто Ф., 1974). «Об акулах ничего нельзя знать заранее. Никогда не доверяйте акулам», – предупреждает Натаниель Кенией (1968).
Но если акула, повстречавшаяся нам, настроена агрессивно, можно ли заставить ее отказаться от своих первоначальных намерений? Биологи отвечают: «Да!» Давно замечено, что акулы обычно осторожны и довольно трусливы. Они нередко подолгу ходят вокруг облюбованного предмета и не станут атаковать, прежде чем не убедятся, что объект нападения – существо, уступающее им в силе. Значит, надо «убедить» акулу в своем превосходстве. Дать ей понять, что она имеет дело с активным, сильным противником, готовым к решительной борьбе, и она отступит (Gold, 1965). Если же человек выглядит беспомощным, беспорядочно барахтается, словно раненая рыба, хищница обязательно перейдет в наступление.
«Встретившись с акулой лицом к лицу, – гласят правила, – не колотите беспорядочно по воде, не пытайтесь удрать от акулы – это бесполезно и лишь ускорит роковую развязку. Какие бы чувства вас ни обуревали в этот момент, пересильте страх и постарайтесь «убедить» акулу в том, что закон природы на вашей стороне» (Gold, 1965). Как отпугнуть акулу? Памятки и руководства для моряков и летчиков, инструкции для подводных пловцов и охотников пестрят многочисленными деловыми советами: отпугните акулу обманным движением, соедините ладони рук и сильно хлопайте по воде, пускайте пузыри, кричите под водой.
Поскольку выиграть единоборство с акулой – вещь малореальная, гораздо проще не вступать в близкое знакомство с ней. Не фамильярничайте с акулами – наставляют знатоки. Помните, что даже самая крохотная из них может нанести серьезное увечье. Удержитесь от соблазна ухватить акулу за хвост, всадить ей в бок гарпун или прокатиться на ней верхом. Убив рыбу, не таскайте ее с собой на кукане или в мешке. Заметив акулу, не ждите, чтобы она сама проявила к вам интерес. Не устраивайте ночных купаний в местах, где появляются акулы. Не входите в воду, имея царапины или кровоточащие ранки (Budker, 1971). Тем, кто помимо своего желания оказался в водах, населенных акулами, надо, не теряя времени, взобраться в шлюпку. Если нет никаких спасательных средств или их отнесло на значительное расстояние, потерпевшим рекомендуется не снимать одежду и особенно обувь, как бы они ни стесняли движений. Уберечь от акульих зубов они, конечно, не уберегут, но от ссадин при соприкосновении с шершавой как терка шкурой акулы – несомненно.
Кроме того, уже давно замечено, что акулы гораздо реже нападают на одетого человека, чем на обнаженного (Llano, 1956).
Находясь на шлюпке или плоту, не следует считать, что акулья опасность окончательно миновала. Известно немало случаев, когда акулы яростно атаковали не только утлые спасательные суденышки, но даже крупные яхты и рыбачьи боты (Coplesson, 1962). Чтобы не спровоцировать нападение, не надо искушать судьбу, рыбача, когда поблизости шныряют акулы, опускать руки или ноги за борт да еще бултыхать ими в воде. Совершенно очевидно, что, выбрасывая за борт остатки пищи, мусор, а тем паче смоченные кровью бинты, рассылаешь окрестным акулам приглашение пожаловать в гости.
И все же жертвам авиационных катастроф и кораблекрушений одних советов, как бы они ни были мудры, было недостаточно. Требовалось что‑то посущественнее и понадежнее, чем параграфы инструкций и памяток.
В 40‑х годах специалистами Вудс‑Холского океанографического института был разработан специальный порошок‑репеллент, состоявший из смеси уксуснокислой меди с черным красителем нигрозином. В условиях океанариума препарат действовал отлично, однако последующие эксперименты в открытом океане вызвали серьезные сомнения в его эффективности (Эйбль‑Эйбльсфельд, 1971; Волович, 1974, и др.).
Сложность использования порошков‑репеллентов заключается также в том, что пловец обнаруживает акулу не далее чем за 30‑40 м, т. е. на расстоянии, которое она может преодолеть за десяток секунд. Чаще же всего акула подплывает незаметно. Кроме того, порошки рассчитаны на одноразовое применение, а защитная зона быстро размывается ветром и течением.
Были предприняты попытки создать порошки из препаратов, высокотоксичных для акул. Для этого американский ученый X. Балдридж провел серию экспериментов для определения средней скорости движения акул, данные которых затем легли в основу расчетов токсичности препарата и величины его концентрации в зависимости от времени прохождения акулой защитной зоны.
В океанариуме на расстоянии 12 м друг от друга установили две вешки, и наблюдатели, вооружившись секундомерами, определяли время, за которое каждая из акул проходила дистанцию.
После многократных замеров ученые с удивлением обнаружили, что все акулы, и 2,3‑2,5‑метровые тигровые, и 0,8‑2‑метровые лимонные, т. е. независимо от вида и размера, плавают с одинаковой скоростью – 0,8‑0,9 м/сек (Baldrige, 1969).
Нетрудно было высчитать, что в защитной зоне с радиусом 10 м акула пробудет какой‑то десяток секунд. Но ведь атакующая акула может развивать скорость 15‑20 м/сек. Успеет ли препарат подействовать в этом случае?
Построив математическую модель защитного поля, X. Балдридж заставил некую «гипотетическую акулу» приближаться к «гипотетической жертве» через зону, в которой концентрация вещества увеличивалась от периферии к центру. Уравнение учитывало время воздействия, концентрацию препарата и общее его количество в воде. Чтобы определить количество вещества, необходимого для создания защитной зоны, полученный интеграл сопоставили с расчетной дозой.
Результат решения системы уравнений показал со всей очевидностью, что, будь препарат на несколько порядков токсичнее цианистого калия, даже в этом случае ни парализовать, ни убить акулу он не успеет. Если все же найти какое‑то сверхъядовитое вещество, то пловец станет его жертвой прежде акулы.
В 1960‑1962 гг. австралийские специалисты предложили бороться с акулами с помощью фармакологических препаратов, но не растворять их в окружающей среде, а вводить прямо акуле в тело. Для этой цели было изготовлено специальное копье, имевшее вместо наконечника оригинальное устройство, напоминавшее своеобразный шприц. В момент укола акула получала «заряд» сильнодействующего вещества. С. Уотсон испытал различные препараты – цианистый калий, стрихнин, никотин – акула поражалась быстро, бескровно и бесшумно (Watson, 1961). Метод показался весьма перспективным. Правда, оставалось неясным, как дозировать фармакологические препараты: ведь одно и то же количество, поражавшее насмерть метровую лимонную, для шестиметровой тигровой могло оказаться не страшнее комариного укуса.
Подсчитать примерное количество заряда взялись специалисты Моутской морской лаборатории Е. Кларк и Л. Шульц (Clark, Schultz, 1965). Чтобы определить средние размеры акул, встреча с которыми наиболее вероятна, они в течение нескольких месяцев выловили около тысячи акул 24 различных видов. Каждая из них тщательно взвешивалась и обмерялась. Оказалось, что почти 90% акул, обитающих в водах Флориды, весят менее 200 кг и имеют длину не более 3 м. Лишь в 10% случаев вес хищниц превышал 200 кг, а длина достигала 4 м и более. Тщательно обсудив результаты акульей «антропометрии», Кларк и Шульц предложили в качестве оптимального заряд 10 г. При этом на 1 кг веса тела акулы придется 50 мг вещества. Этой дозы вполне достаточно, чтобы ее убить (Baldridge, 1968).
Во многих странах популярностью пользуются всякого рода огнестрельные устройства, так называемые «Пауэрхед» и «Бенгстик» – длинные стальные трубки, имеющие на конце патронник для пули крупного калибра и стреляющий механизм. Чтобы поразить акулу насмерть, выстрел надо производить как можно ближе к голове. Однако оружие это – палка о двух концах: грохот взрыва и акулья кровь могут привлечь к месту происшествия приятельниц потерпевшей. В еще более щекотливое положение попадает пловец, если произойдет осечка или не сработает ударное устройство. Принципиально новое средство защиты от акул было предложено американским инженером К. Джонсоном. Идея его создания была подсказана работой сотрудников Гавайского университета. Наблюдая за тихоокеанскими серыми акулами, они обратили внимание на интересный факт. Тунцов, помещенных в бассейне, пугали ударами по воде, а затем небольшое количество воды перекачивали в другой бассейн, где находились акулы. И вот хищницы, спокойно плававшие до этого момента, вдруг приходили в необычайное возбуждение и начинали рыскать в поисках добычи. Аналогичное сообщение было сделано А. Тестером (1962) на X Тихоокеанском конгрессе.
Канадский ихтиолог X. Клеркопер (1962), изучая поведение миноги Petromyson marinos, установила, что эта хищная рыба в поисках пищи руководствуется запахом веществ, выделяемых рыбой‑жертвой. Эти вещества относятся к группе этилендиаминов и этил‑ или диметиламинов.
Так, может быть, и человек привлекает внимание акул какими‑то таинственными флюидами? Они могут содержаться в поте или других выделениях человеческого тела. А что, если веществам этим преградить дорогу в окружающую среду и тем самым лишить акулу информации о присутствии в воде человека: например, завернуть человека в водонепроницаемую ткань, облачить в специальный гидрокостюм или натянуть на него чехол? Во‑первых, он не даст «флюидам» распространиться вокруг, во‑вторых, он скроет от взора акулы очертания человека (Johnson, 1968).
Испытания, проведенные с участием людей и акул, дали положительный результат, и «мешок Джонсона» получил право гражданства.
В последние годы в различных странах ведутся интенсивные работы по созданию миниатюрных электронных излучателей для отпугивания акул.
Порошки‑репелленты, «боевые головки» и ружья, стреляющие синильной кислотой и стрихнином, гарпуны и усаженные шипами дубинки – чего только не изобретали борцы с акулами! Д. Браун предложил, например, использовать для защиты от акул записанные на пленку крики бедствия, издаваемые дельфинами. Стоит лишь воспроизвести их с помощью миниатюрного магнитофона, и дельфины – извечные враги акул – немедленно примчатся на помощь и разгонят хищниц (Мартека, 1967). Журнал «Сайенс дайджест» сообщил, что американские биологи занялись обучением дельфинов, легко поддающихся дрессировке, находить и отпугивать акул в открытом океане (Wood, 1969).
С каждым годом акулья проблема привлекала внимание все большего числа зоологов, ихтиологов, биологов. Необходимо было детально изучить физиологические и анатомические особенности различных видов акул, проанализировать условия, в которых акулы обычно совершают нападения, оценить эффективность существующих средств обороны и отпугивания и наметить наиболее правильные пути их дальнейшей разработки. Изучать акул в условиях бассейнов и океанариумов крайне сложно.
Хищницы тяжело переносят неволю, становятся вялыми, апатичными. И что особенно поразительно, если принять во внимание их живучесть, о которой сложены легенды, они быстро погибают от самых незначительных повреждений.
Оказание помощи при нападении акул. Нападая на человека, акула может нанести ему челюстями обширные, глубокие раны с разрывом мягких тканей, повреждениями костей и обильным кровотечением. Тяжелая физическая и психическая травма нередко сопровождается шоком. Все эти обстоятельства ведут к тому, что значительный процент случаев нападения акулы заканчивается гибелью жертвы (Davies, Campbell, 1962).
Пострадавшему, как только он поднят на лодку или доставлен на берег, немедленно накладывают жгут, чтобы остановить кровотечение. Если условия не позволяют обработать рану, удалить разможженные ткани, ограничиваются наложением стерильной повязки. При повреждении костей на конечность накладывается шина из подручных материалов. Для борьбы с шоком пострадавшему необходимо ввести под кожу 1‑2 куб. см 0,1%‑ного морфина или дать две таблетки промедола, напоить горячим сладким чаем или кофе. Для предупреждения возможного заражения крови следует использовать имеющиеся антибиотики – ввести внутримышечно или дать таблетированный препарат (Halstead, 1963; Erhardt et al., 1972).
Барракуды и мурены
К числу весьма грозных морских хищников также относится «океанская щука» – барракуда (рис. 147.1). Это крупная, до 2 м, рыба с вытянутым зеленоватых тонов телом. Огромная пасть усажена крупными ножевидными зубами. Барракуды ходят стаями. Атака их яростна и стремительна. Хотя случаи нападения барракуды на человека не часты, обычно они заканчиваются тяжелым исходом.
Определенную опасность для людей, высадившихся на берегах тропических островов, представляет мурена (рис. 147.2). Она скрывается в расщелинах скал, в гротах, под камнями, в зарослях кораллов. Это крупная, до 3 м и более, рыба со сплющенным с боков угревидным телом, покрытым слизью. Ее узкие мощные челюсти снабжены крупными ножевидными зубами. Однако вопреки сложившемуся мнению укус мурены не ядовит, и раны, нанесенные ею, довольно быстро заживают после наложения стерильной повязки. Мясо мурены пригодно в пищу. Но поймать ее нелегко. Кожа рыбы настолько прочна, что с трудом пробивается ножом. Чтобы избежать неожиданной встречи с хищницей, все подозрительные расщелины и пещерки предварительно обследуют с помощью палки или ножа‑мачете.
ВЫСАДКА НА БЕРЕГ
После долгих странствий по океанским просторам ветры и течения могут принести спасательный плот к долгожданным берегам земли. О близости ее могут подсказать ветви деревьев с еще зеленой листвой, пучки свежей травы, появление морских змей, зеленоватый оттенок неба.
Увидеть атолл среди океана довольно трудно, так как кромка берега обычно располагается ниже океанских волн. (Это не относится к островам вулканического происхождения с высокими конусовидными вершинами.) Обнаружить его удается по одинокому неподвижному облаку, которое образуется в результате испарения внутренних вод лагуны и возникновения зоны высокой влажности. Кроме того, облако имеет характерный зеленоватый отблеск изумрудной глади лагуны.
Примерное расстояние от суши и направление к ней могут подсказать характер полета и поведение некоторых видов морских птиц. Например, олуши (Sula bassana) редко удаляются от суши на расстояние более 150‑200 км и перед закатом солнца обязательно возвращаются в свои кучеобразные хворостяные гнезда. Заметив в вечерние часы летящих на небольшой высоте этих крупных ярко‑белых птиц, можно с точностью сказать, что, плывя в направлении их полета, можно, добраться до берега.
«Проводником» может стать тропическая птица фаэтон (Phaeton aeterus) с белым, иногда розоватого оттенка оперением, покрытым черными полулунной формы полосками и длинными хвостовыми перьями. Фаэтонов можно узнать издали по «голубиной» манере полета – частым, быстрым взмахам крыльев, – отличающей их от других морских птиц. Избегая посадки на воду, они предпочитают держаться поблизости (в 100‑120 км) от суши и возвращаются назад перед вечерней зарей.
Хищную морскую птицу фрегат (Atagen aquila), обитающую в тропиках, узнают по длинным, до 2 м в размахе, черным крыльям, длинному вилообразному хвосту, крючковатому клюву и характерному долгому парящему полету. Возвращаются на сушу фрегаты уже в сумерках на большой высоте.
Некоторые зарубежные руководства по спасению на море указывают, что появление фрегатов – верный признак того, что до земли не более ста миль. Насколько справедливы эти сведения, можно узнать, заглянув в дневник А. Бомбара: он с сарказмом записал: «Еще с неделю назад я их видел немало и с тех пор прошел миль триста».
Однако и на большом расстоянии от земли встречаются птицы, которые хотя и не представляют интереса в «навигационном» отношении, но могут оказаться неожиданной добычей терпящих бедствие. К ним в первую очередь относится самый крупный пернатый хищник – альбатрос (Diomedea exulanus). Его могучие, исключительно длинные, до 4 м в размахе, узкие крылья позволяют преодолевать огромные расстояния и часами парить над волнами. Брошенную приманку альбатрос видит издалека и бесстрашно хватает ее крючковатым клювом, легко становясь добычей человека.
Но вот прозвучал долгожданный крик – «земля», видны кущи стройных пальм и белая кайма прибоя. Кажется, что все трудности уже позади. Однако именно сейчас, когда до берега рукой подать, нельзя поддаться бездумной радости и забыть об осторожности. Известно, что 90% несчастных случаев происходит в момент высадки на землю. И сколько бы ни пришлось затратить времени на поиск пологого песчаного берега, где высадка относительно безопасна, даже в штормовую погоду не следует спешить. Белые барашки вблизи берега – верный признак того, что под ними скрываются коварные коралловые рифы. Если высадка на спасательной лодке связана с большим риском, добираться до берега лучше вплавь.
Спасательные жилеты все члены экипажа должны предварительно надеть поверх одежды. При небольшом волнении выходить на берег рекомендуется вместе с волной, держась ее обратного склона, а когда волны велики, приблизившись к берегу, находиться следует между волнами, во впадине.
При подходе отраженной волны ныряют под ее гребень, оставаясь лицом к берегу, а затем стараются удержаться во впадине.
Наиболее трудны и опасны для высадки скалистые, крутые побережья, коралловые рифы. Подплывают к берегу или гряде рифов, стараясь держаться заднего склона высокой волны. При этом, удерживаясь на плаву с помощью одних рук, принимают сидячее положение, такое, чтобы ноги, согнутые в коленях, находились чуть впереди, на полметра ниже головы.
Тогда удар о рифы или камни придется на ноги и будет менее опасен. Если первая попытка оказалась неудачной, ее повторяют, дождавшись следующего высокого вала. Иногда на мелководье у берега встречаются настоящие заросли фукусов, ламинарий и др. Чтобы не запутаться в водорослях, эти участки преодолевают брассом, стараясь придать телу горизонтальное положение.
Высаживаясь на лодке в штормовую погоду или при сильном прибое, необходимо принять все меры, чтобы лодка не перевернулась: выбросить на всю длину шнура плавучий якорь и подгребать веслами так, чтобы шнур был все время в натянутом положении.
При сильном прибое, но отсутствии ветра гребень волны необходимо проходить как можно медленнее, чтобы лодка, перевалив через него, не опрокинулась.
Поскольку самое безопасное место на плоту – поперечная надувная банка, на ней следует разместить больных и наиболее ослабевших членов экипажа.
Покидать лодку (плот) нельзя до тех пор, пока она не коснется дна. После этого два человека должны быстро спуститься в воду и, держась за леер, подтянуть лодку (плот) к берегу. Затем экипаж покидает лодку и вытаскивает ее за линию прибоя.
Пологие тропические побережья Африки и Южной Америки, Азии и Австралии, Малайского архипелага, Новой Гвинеи и других островов Тихого и Индийского океанов, заливаемые приливами, илистые участки вблизи эстуариев, где потоки мутной, насыщенной взвесями речной воды смешиваются с океанской, нередко покрыты густыми зарослями вечнозеленых деревьев и кустарников. Это мангровый лес, или мангрова.
Его издали можно узнать по курчавым темно‑зеленым кронам невысоких деревьев с плотной кожистой листвой и затхлому запаху болот.
Деревья, образующие мангрову, авиценнии и ризофоры, относятся к весьма своеобразным представителям тропической флоры.
Ризофора, например, как бы стоит на фундаменте из чудовищных щупалец, хаотического переплетения узловатых, дугообразных корней. Эти корни‑подпорки достигают самых верхних ветвей, снабжая их кислородом (рис. 148.1).
Ризофора – «живородящее растение». Сформировавшийся зародыш развивается и прорастает внутри плода, а созрев, отрывается от плода и, словно копье, вонзается в илистую почву, где и продолжается его дальнейший рост (148.2).
Авиценния по своему внешнему виду ничем не отличается от обычных деревьев. Но корни ее, погрузившись глубоко в ил, выбрасывают на поверхность многочисленные твердые отростки.
Итак, многодневные странствия по волнам океана закончены. Под ногами не зыбкий резиновый пол спасательного плота, а твердая земля. Разведен костер, высушена одежда, собрано и разложено снаряжение. Теперь можно подумать и о «хлебе насущном». Если поблизости раскинулись вечнозеленые заросли мангровы, можно собрать устриц, которые иногда в несметном количестве облепляют воздушные корни и нижние ветви ризофор и авиценний, омываемые водой. Правда, передвигаться в мангровом лесу нелегко. Вязкий болотистый грунт, густой частокол корневых отростков авиценний, переплетения воздушных корней ризофор создают порой непроходимые препятствия. В зарослях мангровы можно столкнуться с крокодилами и ядовитыми змеями, и надо быть предельно осторожным, чтобы не подвергнуться неожиданному нападению.
На американском и европейском побережьях расселины скал на небольшой глубине нередко населяют крупные, до 10 кг, ракообразные – омары (Homarus gammarus, H. americanus).
Их тропические сородичи лангусты (Polinurus vulgaris) не уступают омарам размерами, но лишены их могучих клешней.
Омаров и лангуст ловят с помощью остроги или вершами, сплетенными из веревок, парашютных строп, гибких ветвей, волокон пальмовых листьев. В качестве приманки в верши закладывают подгнившее мясо рыб.
Наиболее богата живностью приливно‑отливная зона. В часы, когда океан отступает, обнажая обширные песчаные отмели, здесь можно наловить крабов и креветок, собрать прилепившихся к валунам, обломкам скал и кораллов морских желудей (Balanus pittaceus и др.). Среди многочисленных разнообразных моллюсков немало съедобных. Это и нарядные морские гребешки (Pecten) с плоскими раковинами, украшенными радиальными желобками, и изящные, с выпуклыми раковинами сердцевидки (Cardium edule). По небольшим воронкам, из которых высовываются тоненькие трубки‑сифоны, можно найти мию (Муа arenaria) – крупного двустворчатого моллюска с белоснежной мягкой раковиной. Вполне съедобны литорины (Litorina) – одностворчатые, принадлежащие к классу улиток.
В речных эстуариях с твердым дном в холодных и тропических водах широко распространены устрицы (Ostrea). Эти небольшие двустворчатые моллюски – весьма полезный продукт питания. В них содержатся витамины группы В и аскорбиновая кислота. Мясо устрицы, лишенное холестерина, содержит столько же протеина, сколько постная говядина. И хотя калорийность одной устрицы не более 10 ккал, ее главная пищевая ценность заключается в гликогене, который накапливает моллюск в своей мышце. Не уступают им по широте распространения и многочисленности мидии (Mytelus). Они тоже селятся на участках берега, защищенных от волн, прикрепляясь ко дну не самой раковиной, а пучком тонких клейких нитей‑биссусов.
На дне лагун коралловых атоллов часто попадаются толстые вздутые известковые раковины одного из крупнейших океанских моллюсков – тридакны (Tridacna gigas). Иногда они относительно невелики (всего 10‑20 см), и заметить их можно лишь по извилистой фиолетовой или зеленоватой линии мантии моллюска, окаймляющей его полуоткрытые створки. Но порой размерами тридакны достигают 1,5 м в поперечнике, а весом – 300 кг (Анго, 1964) (рис. 149). Такие тридакны могут оказаться для неосторожного ныряльщика живым капканом. Стоит случайно попасть ногой в открытые створки раковины, как они мгновенно захлопываются. Освободиться из ловушки можно, лишь перерезав замыкающую мышцу. Для этого нож просовывают между створками и рассекают ее быстрыми пилящими движениями. Эта белая упругая мышца довольно приятна на вкус и напоминает в сыром виде капустную кочерыжку. В пищу также используют мантию моллюска, отварив ее в течение 1‑1,5 часа в соленой воде или прожарив.
На желто‑белом песчаном дне лагун можно увидеть странное животное, напоминающее по внешнему виду пупырчатый огурец, зеленоватой, коричневой и даже черной окраски. Это морской огурец, или голотурия (Cucumaria frondosa). Обычно размеры его 30‑40 см, однако встречаются экземпляры, достигающие полутора и более метров в длину. В пищу идут 5 крупных белых мышц, расположенных вдоль тела животного. Их варят или жарят на медленном огне. В странах Востока некоторые виды голотурий – трепанги – пользуются большой популярностью и даже считаются деликатесом.
К тому же классу иглокожих относятся морские ежи – длинноиглый морской еж (Diadema se tosum) и др. Их мясо, особенно икра, после удаления колючего панциря вполне пригодно в пищу.
На песчаных тропических побережьях по следам, словно оставленным маленьким гусеничным трактором, отыскивают гнездо черепахи. Там, где след обрывается, – у края растительности, у бревна, подножия дюны, – углубившись в песок на 0,5‑0,8 м, в воронкообразном гнезде можно собрать около ста крупных яиц в мягкой кожистой оболочке (Карр, 1971).
Своеобразной пищей служит крупный (30‑40 см) многощетинковый кольчатый червь –палоло (Eunice viridis) (рис. 51). Обычно в течение года он прячется в расщелинах скал, среди рифов, но в строго определенное время всплывает на поверхность океана для совершения брачного танца. В районе архипелага Самоа это происходит в октябре и ноябре, когда луна вступает в последнюю четверть.
В Атлантике, у берегов Флориды и Вест‑Индии, родственный палоло червь Eunice fucata размножается в течение 3 дней в последнюю четверть луны, между 29 июня и 23 июля. В Амбоине, на Малайском архипелаге, подобный червь, называемый «ваво», роится на вторую и третью ночь после полнолуния в марте и апреле. А японский палоло «бачи» (Ceratocephale ossawai) появляется в октябре и ноябре после новолуния и полнолуния (Рессель, Ионг, 1934). Эта связь половой цикличности с фазами луны весьма примечательна. Но что особенно интересно, в роении участвует лишь его задняя часть. Разбухшая от яиц или молок, она отрывается от тела и всплывает. Передняя же еще глубже забивается в расщелину. Несметная масса палоло покрывает порой обширные пространства в десятки квадратных километров. Самки отличаются от светло‑коричневых самцов своим серовато‑индиговым или зеленоватым цветом. Вода становится опаловой. Ветер и течения образуют из икры длинные полосы, которые даже опытными моряками не раз принимались за буруны.
Палоло ловят, вычерпывая сеткой, банкой или черпаком прямо из воды. Эту густую, извивающуюся клубками коричневато‑зеленую массу можно есть сырой без всяких приправ, завертывать в листья хлебного дерева или отваривать (Гижицкий, 1974). Вкусом и запахом палоло напоминает свежую рыбью икру и считается у жителей Полинезии, Меланезии, Микронезии и Вест‑Индии большим деликатесом.
Важным источником питания для людей, оказавшихся на берегу необитаемой земли, могут служить водоросли. Среди более чем 28 тыс. видов этих низших растений съедобными считаются около 80, но зато они широко распространены в прибрежной зоне морей и океанов – от фьордов Гренландии до ледников Антарктиды. Водоросли необычайно богаты пищевыми веществами. Так, в пересчете на сухой вес они содержат от 5 до 50% белков, от 40 до 70% углеводов, от 1 до 3% жиров. Их энергетическая ценность очень высока и достигает в некоторых случаях (диатомовые водоросли) калорийности шоколада (Чепмен, 1953). Но, что весьма важно, усвояемость водорослей человеческим организмом составляет 65‑80%. Одни виды водорослей можно употреблять в пищу сырыми, другие приходится сначала прожаривать, отваривать или высушивать.
Одной из наиболее распространенных водорослей, образующей настоящие подводные луга у берегов Китая, Японии, Америки, является бурая водоросль из рода ламинарий, называемая морской капустой (Laminaria saccharina, L. japonica) (рис 152). Это крупная водоросль с коротким стволиком и гигантским листообразным, зазубренным по краям, мясистым слоевищем темно‑зеленого или желто‑зеленого цвета, достигающим в длину 20 м. Слоевища богаты высокомолекулярными полисахаридами – ламинарином и маннитом, содержание которых достигает 42% и более.
Вкусовые качества ламинарии высоко ценятся у народов Юго‑Восточной Азии. Достаточно сказать, что в Японии из нее приготавливают свыше трехсот блюд.
В рыбацких деревушках. Ирландии охотно используют в пищу невысокие (от 3 до 5 см) кустики красной водоросли хондруса курчавого (Chondrus crispus), называемого ирландским мохом (рис. 153.2). Его хрящеватые слоевища, окрашенные в различные цвета, от светло‑желтого до пурпурного, вкусны в жареном и вареном виде. Водоросль служит для приготовления полисахарида, используемого против простудных заболеваний. Шотландские рыбаки вместо овощного гарнира нередко употребляют красную водоросль из рода родимения (родимения дланевидная – Rhodymenia palmata) (рис. 153.1). Ее пластинчатые слоевища светло‑розовой, розоватой или пурпурной окраски густо покрывают каменистое, скалистое или ракушечное дно литорали и сублиторали Северной Атлантики и арктических морей.
В Англии и Уэльсе вас могут угостить лепешками из красной водоросли порфиры лопастной (Porphyra laciniata). Ее небольшие (до 2,5 см в высоту) тонкие розоватые или красные слоевища округлой формы со слабоволнистыми краями устилают дно верхней части литорали арктических морей и севера Атлантического океана (рис. 153.3). Порфиру используют вместо овощной приправы или варят в уксусе, а из получившейся студенистой массы пекут лепешки.
Жители прибрежных районов многих стран нередко употребляют в качестве приправы к мясным и рыбным блюдам зеленую водоросль из рода ульва, так называемый морской салат (Ulva lactuca). Пластинчатые ярко‑зеленые слоевища, напоминающие по внешнему виду его «сухопутного однофамильца», промытые в морской воде, вполне съедобны в сыром виде (рис. 154.1). Но они становятся особенно вкусными, если их высушивать на солнце до тех пор, пока они не станут ломкими, а затем кусочки поджарить.
В холодных морях в нижней литорали и сублиторали широко распространена бурая водоросль алярия съедобная (Alaria esculenta). Ее длинное (до 2 м) зеленовато‑бурое слоевище имеет широкое среднее ребро (рис. 154.2). После непродолжительного вымачивания и варки оно становится мягким и приятным на вкус.